首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared spectra of isotopically dilute (matrix-isolated HDO molecules) isostructural compounds M(HCOO)2·2H2O (M=Mn,Fe,Co,Ni,Zn,Cu) are presented and discussed in the region of the OD stretching modes. According to the structural data the compounds under study are divided into two groups: in M(HCOO)2·2H2O (M=Mn,Ni,Zn) the H2O(1) molecules form stronger hydrogen bonds as compared to H2O(2); in M(HCOO)2·2H2O (M=Fe,Co,Cu) the H2O(2) molecules form stronger hydrogen bonds as compared to the H2O(1) molecules. The influence of the metal–water interactions (synergetic effect) and the unit-cell volumes (repulsion potential of the lattice) on the hydrogen bond strength within the isostructural series is discussed. The wavenumbers of the uncoupled OD stretching modes of the HDO molecules influenced by guest ions (Cu2+ ions matrix-isolated in M(HCOO)2·2H2O and M2+ ions matrix-isolated in Cu(HCOO)2·2H2O) are presented and commented. For example, the analysis of the spectra reveals that when Cu2+ ions are included in the structure of M(HCOO)2·2H2O the hydrogen bonds of the type M–OH2OCHO–Cu are considerably weaker as compared to those of the same type formed when M2+ ions are included in the structure of Cu(HCOO)2·2H2O if the cations remain unchanged.  相似文献   

2.
A new complex [Cu (C4H7N3) H2O (4,4′-Hbpy)]·SO4·NO3 was synthesized and X-ray characterized. Elemental analysis, X-ray diffraction and infrared spectroscopy of the complex were performed. The crystal system is orthorhombic. Crystal data: Fw=498.98, spacegroup: P212121. Z=4, a=14.952(3), b=20.491(4), c=6.713 Å. V=2056.7(9) Å. λ(Mo-K)=0.71070 Å. μ=12.18 cm−1, Dcalc=1.66 g/cm3, F000=1032.00, R=0.062, Rw=0.087. X-ray analysis illustrated that 4,4′-bpy is mono-protonated and that there are two kinds of anions in one molecule, which give rise to the hydrogen interaction between the molecules in the crystal. Then an extended three-dimensional network is formed along the hydrogen bonds and π–π bonds between the pyridine rings.  相似文献   

3.
The polarized absorption infrared spectra of CsHSeO4 and CsDSeO4 single crystals and polarized Raman spectra of the CsHSeO4 single crystal were measured at room temperature. The polarization features of the internal vibrations of the HSeO4 ions are predicted on the basis of the X-ray structure assuming strong couping between the vibrations of the two shortest Se---O bonds and an intermediate Se---O bond. The bending methods γOH and δOH of a hydrogen bond appear at 805 cm and 1258 cm−1, respectively. The νOH absorption has the ABC structure due to Fermi resonance of νOH with the overtones of the δOH and γOH vibrations. A similar shape of the νOH band is observed in the Raman spectra. The νOD absorption has a different shape from that of νOH. Intra-chain coupling was observed for the νOH and νOD vibrations.  相似文献   

4.
Nickel(II) chromate complex with imidazole (HIm) was isolated from the [Ni2+–HIm–CrO42−] system in various experimental conditions, i.e. reagent molar ratios and nickel(II) salts. The catena(μ-CrO4-O,O′)[Ni(HIm)3H2O] (1) crystallizes in monoclinic crystal system—space group P21/n with cell parameters: a=11.784(2), b=8.899(2), c=13.934(3) (Å), β=95.19(3) (°). The unit cell contains two independent helixes, left- and right-handed, stabilized by intrahelical and interhelical hydrogen bonds (HB) and π–π interactions. The cis coordination of the CrO42− anions and the HB systems appeared to be the main determinants of the helical architecture. To the best of our knowledge the cis-chromate coordination was observed for the first time. The cis coordination causes the distortion of the nickel octahedron, which was analysed by 4 K single crystal electronic spectra with D4h symmetry approximation (gaussian resolution and crystal field parameters). This symmetry was also confirmed with the polarised electronic spectra. The magnetic properties of the complex suggest the occurrence of weak intrachain antiferromagnetic interactions between the magnetic NiII center. The computational DFT studies of complex 1 assuming three possible isomers mer[(HIm)3]–cis[(CrO42−)2], mertrans and faccis suggested that the main contribution to the stability of 1 might have interhelical and intrahelical hydrogen bonds.  相似文献   

5.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

6.
Violet single-crystals of the complex [Cu(ox)(phen)2]·5H2O (1), where ox2− is oxalate and phen is 1,10-phenanthroline, were obtained by slow evaporation of a solution previously prepared by dissolving Cu(ox)·1/3H2O in a water–acetonitrile solution of phenantroline. Its crystal structure consists of neutral mononuclear [Cu(ox)(phen)2] units and crystallization water molecules which are held together by face-to-face stacking interactions between the phenantroline aromatic rings and an extensive three-dimensional network of Ow–HO/Ow hydrogen bonds. The copper atom is hexaco-ordinated to two oxygen atoms of a bidentate oxalato ligand and to four nitrogen atoms belonging to two phen ligands in a distorted octahedral cis arrangement. The e.p.r. Q-band spectrum of 1 shows an axial-type signal with g-tensor values of g=2.28 and g=2.06, which is consistent with the axially elongated octahedral geometry of the copper(II) chromophore found in the structural work. The relation gg>2.0 indicates a d(x2y2) ground state. Variable temperature susceptibility measurements (5–300 K) reveals the occurrence of magnetically isolated paramagnetic centers in the crystal structure. Thermal degradation of the compound 1 under synthetic air atmosphere starts between 50 and 110°C with an endothermic process attributable to the release of the crystallization water molecules.  相似文献   

7.
The crystal structure of dicesium trans-tetraaquadichlorochromium(III) chloride Cs2CrIIICl5·4H2O with trans-[MIIIX2(H2O)4]+ complex ions (space group C2/c, Z=4, a=1915.3(4) pm, b=614.1(1) pm, c=1392.0(3) pm, and β=118.24(3)°, final R1=0.0246 for 2100 unique reflections) was redetermined by single-crystal X-ray diffraction studies. It was found to crystallize in a 2c super structure of the structure reported previously (Inorg. Chem. 20 (1981) 1566; Inorg. Chem. 36 (1997) 2248). The obtained structure data now agree with the results of infrared spectroscopic studies, which has been confirmed in this work, namely that there are two different hydrate H2O molecules in the structure. Phase transitions, static or dynamic disorder of the hydrate H2O molecules, and space group C2/m proposed in the literature were ruled out. The coordinates of the four hydrogen positions derived from the X-ray data have been improved via the O–H distances derived from the wave numbers of the OD stretching modes of matrix isolated HDO molecules (2426, 2323, and 2306 cm−1, 263 K) by using the νOD versus rO–H correlation curve reported in the literature (J. Mol. Struct. 404 (1997) 63). The νOD versus rHCl correlation curve reported by Mikenda (J. Mol. Struct. 147 (1986) 1) should be improved, especially for strong hydrogen bonds. The two hydrate H2O molecules of the title compound are strongly distorted with a weak and a relatively strong O–HCl hydrogen bond each thus intramolecular coupling of the two OH stretching vibrations to coupled ones is largely reduced and, hence, the wavenumbers of the OH and OD stretching modes of the HDO molecules mainly resemble those of the H2O and D2O molecules. The strength of the hydrogen bonds is in accordance with the predictions of the competitive and synergetic effects. Chloro ligands are weaker hydrogen bond acceptor groups than chloride ions.  相似文献   

8.
A novel tetranuclear terbium(III) complex [Tb4(OH)4(pybet)6(H2O)8][Tb4(OH)4(pybet)6(H2O)7 (NO3)](ClO4)14·6H2O has been synthesized and shown by X-ray crystallography to have a cubane-like Tb43-OH)42-carboxylato-O,O′)6 core. The ligand pybet is pyridinoacetate, C5H5+N-CH2CO2. Magnetic susceptibility data were measured for this Tb4 complex in the range of 2.0–320 K and in fields of 1.0 G to 50.0 kG. It is concluded that either there is very weak antiferromagnetic exchange interaction (J = −0.015 cm−1) or there is a small crystal-field splitting of the 7F6 TbIII ground state.  相似文献   

9.
The rate constants at which oxidizing and reducing radicals react with the dinuclear iron(III) complex Fe2O(ttha)2− were measured in neutral aqueous solution. The rate constants for reduction of the complex by ·CO2.− CH3.CHOH and O2.− were found to be comparable with rate constants previously measured in mononuclear iron(III) polyaminocarboxylate systems. Fe2O(ttha)2− reacts slowly with O2.− (k8 = (1.2 ± 0.2) × 104 dm3 mol−1 s−1) and, hence, is a relatively poor catalyst for the dismutation of superoxide radical. The hydrated electron reduces the complex at a diffusion-controlled rate in a process which consumes one proton: eaq + Fe2O(ttha)2− → Fe2III,IIO(ttha)3− The reduction by carbon-centered radicals produces a (III,II) mixed-valence complex with an absorption spectrum different from that of the Fe2(II,III) species produced from reduction by the hydrated electron. The oxidizing radicals .OH and ·CO3 appear to act as reductants of the complex via ligand oxidation rather than by oxidation of the Fe2IIIO core to Fe2III,IVO. In the former case ligand attack appears to occur mainly at the methylene carbon of a glycinate group. The decarboxylation product, CO2, was detected by its aquation reaction in the presence of a pH sensitive dye, bromthymol blue.  相似文献   

10.
The second-order rate constants of gas-phase Lu(2D3/2) with O2, N2O and CO2 from 348 to 573 K are reported. In all cases, the reactions are relatively fast with small barriers. The disappearance rates are independent of total pressure indicating bimolecular abstraction processes. The bimolecular rate constants (in molecule−1 cm3 s−1) are described in Arrhenius form by k(O2)=(2.3±0.4)×10−10exp(−3.1±0.7 kJmol−1/RT), k(N2O)=(2.2±0.4)×10−10exp(−7.1±0.8 kJmol−1/RT), k(CO2)=(2.0±0.6)×10−10exp(−7.6±1.3 kJmol−1/RT), where the uncertainties are ±2σ.  相似文献   

11.
The photophysics of three complexes of the form Ru(bpy)3−(pypm)2+ (where bpy2,2′-bipyridine, pypm 2-(2′-pyridyl)pyrimidine and P=1, 2 or 3) was examined in H2O, propylene carbonate, CH3CN and 4:1 (v/v) C2H5OH---CH3OH; comparison was made with the well-known photophysical behavior of Ru(bpy)32+. The lifetimes of the luminescent metal-to-ligand charge transfer (MLCT) excited states were determined as a function of temperature (between −103 and 90 °C, depending on the solvent), from which were extracted the rate constants for radiative and non-radiative decay and ΔE, the energy gap between the MLCT and metal-centered (MC) excited states. The results indicate that *Ru(bpy)2(pypm)2+ decays via a higher lying MLCT state, whereas *Ru(pypm)32+ and *Ru(pypm)2(bpy)2+ decay predominantly via the MC state.  相似文献   

12.
Two novel hydrogen maleato (HL) bridged Cu(II) complexes 1[Cu(phen)Cl(HL)2/2] 1 and 1[Cu(phen)(NO3)(HL)2/2] 2 were obtained from reactions of 1,10-phenanthroline, maleic acid with CuCl2·2H2O and Cu(NO3)2·3H2O, respectively, in CH3OH/H2O (1:1 v/v) at pH=2.0 and the crystal structures were determined by single crystal X-ray diffraction methods. Both complexes crystallize isostructurally in the monoclinic space group P21/n with cell dimensions: 1 a=8.639(2) Å, b=15.614(3) Å, c=11.326(2) Å, β=94.67(3)°, Z=4, Dcalc=1.720 g/cm3 and 2 a=8.544(1) Å, b=15.517(2) Å, c=12.160(1) Å, β=90.84(8)°, Z=4, Dcalc=1.734 g/cm3. In both complexes, the square pyramidally coordinated Cu atoms are bridged by hydrogen maleato ligands into 1D chains with the coordinating phen ligands parallel on one side. Interdigitation of the chelating phen ligands of two neighbouring chains via π–π stacking interactions forms supramolecular double chains, which are then arranged in the crystal structures according to pseudo 1D close packing patterns. Both complexes exhibit similar paramagnetic behavior obeying Curie–Weiss laws χm(T−θ)=0.414 cm3 mol−1 K with the Weiss constants θ=−1.45, −1.0 K for 1 and 2, respectively.  相似文献   

13.
Infrared and Raman spectra of the polycrystalline complex cyanide acids H3MIII(CN)6 (M=Fe,Co) and their deutero analogues were investigated at 300 and 90K in the region 4000-100 cm−1. The spectra indicate clearly that the site symmetry of the M(CN)63− ion is C3v for M=Fe and D3d for M=Co. These conclusions are consistent with an asymmetric N-H·N bond in H3Fe(CN)6 and with a symmetric one in H3Co(CN)6. The N-H stretching frequencies are assigned as ca. 1100 cm−1 (Fe) and as 560 cm−1 (Co), the shift being related to the difference in the hydrogen bonding strength, 2.665 Å (Fe) and 2.582 Å (Co). The spectroscopic behaviour of these very short N-H·N bonds appears to be similar to that of the strong O-H·O bonds in type A (for M=Co) or type pseudo-A compounds (for M=Fe).  相似文献   

14.
Complexes of ethylenediamine-N,N,N′,N′-tetraacetanilide (edtan, C34H36N6O14) with cobalt(II), nickel(II) and copper(II) in the solid state and in solution are reported for the first time. Thermodynamic data (stability constant, and derived Gibbs energy, enthalpy and entropy changes)for the 1 : 1 complexation of edtan with the metal ions at 298.15 K in water-saturated butan-1-ol gave the selectivity sequence log10Ks; Ni2+, 4.56±0.02; Cu2+, 4.41±0.01; Co2+, 4.18±0.04 as found from microcalorimetric titration studies. The entropies suggested that the structure of the 1 : 1 complex with copper(II) contains fewer chelate rings than those for nickel(II) and cobalt(II) (δcS0 : Cu-21.4, Co 5.7, Ni 3.9 J mol−1K−1). Solid complexes of the metal ions with edtan and perchlorate as the counter anion were prepared. For each, a complex with a 1 : 1 metal: edtan stoichiometry with non-coordinated perchlorate was isolated. The X-ray structure of [Cu(edtan)(H2O)][ClO4]2·1.5H2O (1) revealed a six-coordinate Cu centre with edtan acting as pentadentate ligand (2N, 3O) with the coordination sphere completed by an oxygen atom from water. In striking contrast to the Cu complex, the Co centre in [Co(edtan)(H2O)][ClO4]2·H2O·0.5C2H5OH (2) is seven-coordinate with hexadentate edtan (2N, 4O) and one coordinated water molecule. There is thus an excellent confirmation of the results obtained from the microcalometric study in that edtan forms four chelate rings to Cu but five to Co in the solid state. The ability of the ligand to extract metal ions from water to the water-saturated butan-1-ol phase was assessed from distribution data as a function of the aqueous phase hydrogen ion concentration and of the ligand concentration in the organic phase. The data showed that Cu2+ is selectively extracted over a wide range of aqeous phase hydrogen ion concentrations.  相似文献   

15.
This work presents chemical modeling of solubilities of metal sulfates in aqueous solutions of sulfuric acid at high temperatures. Calculations were compared with experimental solubility measurements of hematite (Fe2O3) in aqueous ternary and quaternary systems of H2SO4, MgSO4 and Al2(SO4)3 at high temperatures. A hybrid model of ion-association and electrolyte non-random two liquid (ENRTL) theory was employed to fit solubility data in three ternary systems H2SO4–MgSO4–H2O, H2SO4–Al2(SO4)3–H2O at 235–270 °C and H2SO4–Fe2(SO4)3–H2O at 150–270 °C. Employing the Aspen Plus™ property program, the electrolyte NRTL local composition model was used for calculating activity coefficients of the ions Al3+, Mg2+ Fe3+ and SO42−, HSO4, OH, H3O+, respectively, as well as molecular species. The solid phases were hydronium alunite (H3O)Al3(SO4)2(OH)6, hematite Fe2O3 and magnesium sulfate monohydrate (MgSO4)·H2O which were employed as constraint precipitation solids in calculating the metal sulfate solubilities. A correlation for the equilibrium constants of the association reactions of complex species versus temperature was implemented. Based on the maximum-likelihood principle, the binary interaction energy parameters for the ionic species as well as the coefficients for equilibrium constants of the reactions were obtained simultaneously using the solubility data of the ternary systems. Following that, the solubilities of metal sulfates in the quaternary systems H2SO4–Fe2(SO4)3–MgSO4–H2O, H2SO4–Fe2(SO4)3–Al2(SO4)3–H2O at 250 °C and H2SO4–Al2(SO4)3–MgSO4–H2O at 230–270 °C were predicted. The calculated results were in excellent agreement with the experimental data.  相似文献   

16.
The infrared spectra of solid samples of C4H7K and C4D7K have been investigated in the 4000 to 30 cm−1 range. A complete assignment of intramolecular fundamentals of C4H7 and C4D7 ions and of potassium-allyl vibrations is proposed and the intramolecular force constants are calculated. The C(CH2)32− anion has been identified spectroscopically. Structures of C3H5, C4H7 and C(CH3)32− are discussed and compared with those optimised by the MINDO/3 method.  相似文献   

17.
The new iodoammonium salts o-C6H4(NH2)2I+I (1) and o-C6H4(NH2)2I+ AsF6 (2) were prepared by reaction of o-phenylene diamine with I2 or I3+AsF6, respectively. Compound 1 reacts with AlI3 yielding quantitatively the corresponding tetraiodoaluminate o-C6H4(NH2)2I+AlI4 (3). The species were characterized by chemical analysis, vibrational (IR and Raman) and temperature-dependent 1H NMR spectropscopy. Direct evidence for a N---I bond was found in the Raman spectra of 1, 2 and 3 (ν(NI) = 599–600 cm−1).  相似文献   

18.
The generality of a two-electron reduction process involving an mechanism has been established for M3(CO)12 and M3(CO)12n(PPh3)n (M = Ru, Os) clusters in all solvents. Detailed coulometric and spectral studies in CH2Cl2 provide strong evidence for the formation of an ‘opened’ M3(CO)122− species the triangulo radical anions M3(CO)12−· having a half-life of < 10−6 s in CH2Cl2. However, the electrochemical response is sensitive to the presence of water and is concentration dependent. An electrochemical response for “opened” M3(CO)122− is only detected at low concentrations < 5 × 10−4 mol dm−3 and under drybox conditions. The electroactive species ground at higher concentrations and in the presence of water M3(CO)112− and M6(CO)182− were confirmed by a study of the electrochemistry of these anions in CH2Cl2; HM3(CO)11 is not a product. The couple [M6(CO)18]−/2− is chemically reversible under certain conditions but oxidation of HM3(CO)11 is chemically irreversible. Different electrochemical behaviour for Ru3(CO)12 is found when [PPN][X] (X = OAc, Cl) salts are supporting electrolytes. In these solutions formation of the ultimate electroactive species [μ-C(O)XRu3(CO)10] at the electrode is stopped under CO or at low temperatures but Ru3(CO)12−· is still trapped by reversible attack by X presumably as [η1-C(O)XRu3(CO)11]. It is shown that electrode-initiated electron catalysed substitution of M3(CO)12 only takes place on the electrochemical timescale when M = Ru, but it is slow, inefficient and non-selective, whereas BPK-initiated nucleophilic substitution of Ru3(CO)12 is only specific and fast in ether solvents particulary THF. Metal---metal bond cleavage is the most important influence on the rate and specificity of catalytic substitution by electron or [PPN]-initiation. The redox chemistry of M3(CO)12 clusters (M = Fe, Ru, Os) is a consequence of the relative rates of metal---metal bond dissociation, metal-metal bond strength and ligand dissociation and in many aspects resembles their photochemistry.  相似文献   

19.
The title complex [NH_3CH_2CH(NH_2)CH_3]_2 [M(Ⅵ)O_2(OC_6H_4O)_2](M= Mo_(0.6)W_(0.4))was synthesized via a simple solution-phase chemical route.The determination of single crystal X-ray diffraction revealed that the title compound is crystallized in a monoclinic system with P2(1)/n space group,a=1.0913(10)nm,b=1.0442(10)nm,c=1.8842(19)nm,α=90°,β=96.530(17)°,γ=90°,Z=4,and V=2.133(4)nm3.The mononuclear anionic unit [M(Ⅵ)O2(OC6H4O)2]2-displays chiral pseudo-octahedral [MO_6] coordination geometry and is linked by chiral cations via hydrogen bond and π…π stacking interaction.The transmission electron microscopy images show that the title complex is comprised of nano-particles with diameters ranging from 20 to 50 nm.The NMR study shows the 1H downfield chemical shifts of [NH_3CHaHbCH(NH_2)CH_3] cations in the title complex when it is mixed with adenosine-triphosphate(ATP),and the chemical shift difference between Ha and Hb is increased greatly,and most of the catecholate ligands dissociate from the central metal atoms.The DNA cleavage activity experiment reveals that DNA cleavage promoted by the title complex is lower than that by Na_2MoO_4 which possesses antitumor pro-perty,but higher than that by Na_2WO_4.  相似文献   

20.
Saddle point geometries and barrier heights have been calculated for the H abstraction reaction HO2(2A″)+H(2S) → H2(1Σ+g)+O2(3Σg) and the concerted H approach-O removing reaction HO2 (2A″)+H(2S) → H2O(1A1)+O(3P) by using SDCI wavefunctions with a valence double-zeta plus polarization basis set. The saddle points are found to be of Cs symmetry and the barrier heights are respectively 5.3 and 19.8 kcal by including size consistent correction. Moreoever kinetic parameters have been evaluated within the framework of the TST theory. So activation energies and the rate constants are estimated to be respectively 2.3 kcal and 0.4×109 ℓ mol−1 s−1 for the first reaction, 20.0 kcal and 5.4.10−5 ℓ mol−1 s−1 for the second. Comparison of these results with experimental determinations shows that hydrogen abstraction on HO2 is an efficient mechanism for the formation of H2 + O2, while the concerted mechanism envisaged for the formation of H2O + O is highly unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号