首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arpan Das 《哲学杂志》2013,93(11):867-916
Abstract

Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material’s microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.  相似文献   

2.
Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics(MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal,bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals.  相似文献   

3.
马国亮  刘海  王豪  李兴冀  杨剑群  何世禹 《物理学报》2013,62(14):147102-147102
利用低温力学测试系统研究了电化学沉积纳米Ni在77 K温度下的压缩行为. 室温下纳米Ni 的屈服强度为 2.0 GPa, 77 K温度下的屈服强度为3.0 GPa, 压缩变形量则由室温的10%左右下降到5%. 借助应变速率敏感指数、激活体积、扫描电子显微和高分辨透射电子显微分析, 对纳米Ni的塑性变形机制进行了表征. 研究表明, 在77 K温度下的塑性变形主要是由晶界-位错协调变形主导, 晶界本征位错弓出后无阻碍地在晶粒内无位错区运动, 直至在相对晶界发生类似切割林位错行为. 同时分析了弓出位错的残留位错部分在协调塑性变形时起到的增加应变相容性和减小应力集中的作用. 利用晶界-位错协调机制和残留位错运动与温度及缺陷的相关性揭示了纳米Ni室温和77 K温度压缩性能差异的内在原因. 关键词: 塑性变形 强度 位错  相似文献   

4.
A molecular dynamics simulation of the plastic deformation and the onset of fracture of nanocrystalline metals is performed using the example of copper. Successive stages of the response of the microstructure of a metal to deformation are considered, namely, grain boundary sliding, the nucleation and gliding of dislocations, and the formation and growth of microdamage nuclei. The influence of the grain size of a nanocrystal on its plasticity and strength is studied.  相似文献   

5.
The present study investigates the variation of flow stress and microstructural evolution with strain for ZK60 magnesium alloy. A new constitutive equation was used to model the flow stress with excellent results. This constitutive analysis and the microstructural studies carried out on strained samples revealed the existence of two different regimes. At temperatures above 300 °C, moderate grain growth and intragranular dislocation activity. Yet, the calculated value of the activation energy and the marked increase in the equivalent strain to fracture indicated grain boundary sliding as a dominant mechanism in this regime of strain rate and temperature, with dislocation motion playing an ancillary role. At lower temperatures, deformation was exclusively governed by dislocation motion, with the extensive occurrence of dynamic recrystallization, which started at low strains, and absence of grain growth.  相似文献   

6.
The basic results from investigations of certain real problems in the physics of plasticity for single crystals and polycrystalline metal alloys carried out under the direction of the authors are given. The microdeformation patterns and formation of the flow limit in polycrystalline material are treated; the features of the mechanisms of deformation, deformational hardening, and the defect substructure in high-strength metal alloys are characterized. Analyses are carried out for phenomena involving activation of grain boundaries by grain boundary flows of impurity atoms, and experimentally based features of deformation on different structural levels under active extension, creep, and sign-alternating loading conditions. The main attention is given to the development of collective deformation modes. A discussion of some structural aspects of the realization of meso-level plastic flow with different deformation conditions is presented. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 5–15, August, 1998.  相似文献   

7.
D. Catoor 《哲学杂志》2013,93(16):2154-2185
In polycrystalline materials that fail by transgranular cleavage, it is known that crystallographic misorientation of preferred fracture planes across grain boundaries can provide crack growth resistance; despite this, the micromechanisms associated with crack transmission across grain boundaries and their role in determining the overall fracture resistance are not well understood. Recent studies on diverse structural materials such as steels, aluminum alloys and intermetallics have shown a correlation between fracture resistance and the twist component of grain misorientation. However, the lack of control over the degree and type of misorientation in experimental studies, combined with a dearth of analytical and computational investigations that fully account for the three-dimensional nature of the problem, have precluded a systematic analysis of this phenomenon. In this study, this phenomenon was investigated through in situ crack propagation experiments across grain boundaries of controlled twist misorientation in zinc bicrystals. Extrinsic toughening mechanisms that activate upon crack stagnation at the grain boundary deter further crack propagation. The mechanical response and crack growth behavior were observed to be dependent on the twist angle, and several accommodation mechanisms such as twinning, strain localization and slip band blocking contribute to fracture resistance by competing with crack propagation. Three-dimensional finite element analyses incorporating crystal plasticity were performed on a stagnant crack at the grain boundary that provide insight into crack-tip stress and strain fields in the second grain. These analyses qualitatively capture the overall trends in mechanical response as well as strain localization around stagnant crack-tips.  相似文献   

8.
王静  吴希俊  王颖 《物理学报》1993,42(12):1963-1957
系统地研究了<110>取向倾侧铜-铋三晶的断裂行为,并与铜-铋双晶的结果比较,结果表明:三叉结点对不同取向的铜-铋三晶的断裂行为产生不同程度的影响,使得同一晶界在铜-铋三晶和双晶中有不同的断裂行为,三叉结附近的高内应力引起范性形变的不均匀性,使三晶中出现滑移多相性和晶粒的旋转。结合三叉结点附近应力场的计算,对此进行了讨论。 关键词:  相似文献   

9.
The formation of helium bubbles in 18–10 steel and 20–45 nickel alloy implanted by He ions during tension is studied, and helium release from them during high-temperature deformation is analyzed. During helium implantation, an applied tensile stress favors bubble formation and material swelling. Annealing and deformation of the irradiated materials increase the bubble size. Helium bubble migration and accumulation at grain boundaries cause cracking. Bubble migration is caused by a stress gradient. The deformation of the irradiated materials leads to an increase in the release rate of accumulated helium. A model is proposed for the development of helium porosity in a material under stress. A brittle fracture criterion is formulated for such a material.  相似文献   

10.
Superplastic behaviour of microcrystalline materials is now believed to be controlled by cooperative grain boundary sliding (CGBS). An increasing role of grain boundary mediated plasticity with decreasing grain size down to the nanoscale was predicted leading to the prospect of enhanced superplasticity in nanocrystalline materials. Nevertheless, materials with nanosized grains have revealed a significant decrease in plasticity contrary to theoretical prediction. Direct evidence of CGBS in nanocrystalline Ni3Al alloy from SEM surface analysis and in-situ TEM tensile testing was detected, confirming one similarity in the rheology of deformation processes between micro- and nanomaterials. Thus, differences in deformation behaviour of materials at these two length scales are related to the probability of sliding surface formation, sliding distance and related accommodation mechanisms.  相似文献   

11.
The temperature-rate dependences of strain resistance and the mechanisms of grain boundary sliding in Pb polycrystals and Pb-based alloys under active tension were investigated. The activation energy of plastic deformation and grain boundary sliding was determined. The structural mechanisms of grain boundary sliding were studied in a wide temperature range. The conclusion was made that self-consistency of grain boundary sliding and intragranular plastic flow has its origin in rotational deformation modes, with the grain boundary sliding being a primary process. Theoretical analysis of rotational deformation modes involved in grain boundary sliding was performed. It is shown that the dependence of deforming stress on the polycrystal grain size is impossible to describe by one universal Hall-Petch equation.  相似文献   

12.
The deformation behavior of a Ti–5Al–2.5Sn (wt %) near-α alloy was investigated during in-situ deformation inside a scanning electron microscope. Tensile experiments were performed at 296?K and 728?K (≈0.4?T m), while tensile-creep experiments were performed at 728?K and 763?K. Active deformation systems were identified using electron backscattered diffraction-based slip trace analysis. Both basal and prismatic slip systems were active during the tensile experiments. Basal slip was observed for grains clustered around high Schmid factor orientations, while prismatic slip exhibited less dependence on the crystallographic orientation. The tension-creep experiments revealed less slip but more development of grain boundary ledges than in the higher strain rate tensile experiments. Some of the grain boundary ledges evolved into grain boundary cracks, and grain boundaries oriented nearly perpendicular to the tensile axis formed ledges earlier in the deformation process. Grain boundaries with high misorientations also tended to form ledges earlier than those with lower misorientations. Most of the grain boundary cracks formed in association with grains displaying hard orientations, where the c-axis was nearly perpendicular to the tensile direction. For the tension-creep experiments, pronounced basal slip was observed in the lower-stress creep regime and the activity of prismatic slip increased with increasing creep stress and temperature.  相似文献   

13.
An original two-step “three phase” elastic–viscoplastic scale transition model is developed based on the combined self-consistent and Mori–Tanaka schemes. A coated inclusion is embedded within a matrix, wherein the inclusion represents grain interiors and the coating of the inclusion mimics the effects of grain boundaries and triple junctions. The predominant behavior within the grain interiors is captured through dislocation glide, whereas grain boundary (GB) dislocation emission and absorption, as well as thermally assisted GB sliding, describe the deformation processes within the coating describing the GB affected zone. Furthermore, an imperfect interface is assumed between the inclusion and the coating to account for viscoplastic grain boundary sliding along a stick-slip mechanism. Results and discussion focus on the competitive roles of GB sliding, GB dislocation emission/absorption, dislocation sweep in grain cores and collective dislocation plasticity, and the origins of the pronounced strain rate sensitivity of fcc NC materials.  相似文献   

14.
杨剑群  马国亮  李兴冀  刘超铭  刘海 《物理学报》2015,64(13):137103-137103
本文利用低温力学测试系统研究了电化学沉积纳米晶Ni在不同温度和宽应变速率条件下的压缩行为. 借助应变速率敏感指数、激活体积、扫描电子显微镜及高分辨透射电子显微镜方法, 对纳米晶Ni的压缩塑性变形机理进行了表征. 研究表明, 在较低温度条件下, 纳米晶Ni的塑性变形主要是由晶界位错协调变形主导, 晶界本征位错引出后无阻碍的在晶粒内无位错区运动, 直至在相对晶界发生类似切割林位错行为. 并且, 在协调塑性变形时引出位错的残留位错能够增加应变相容性和减小应力集中; 在室温条件下, 纳米晶Ni的塑性变形机理主要是晶界-位错协调变形与晶粒滑移/旋转共同主导. 利用晶界位错协调变形机理和残留位错运动与温度及缺陷的相关性揭示了纳米晶Ni在不同温度、不同应变速率条件下力学压缩性能差异的内在原因.  相似文献   

15.
This paper presents the results of measurements of the strength properties of technically pure tantalum under shock wave loading. It has been found that a decrease in the grain size under severe plastic deformation leads to an increase in the hardness of the material by approximately 25%, but the experimentally measured values of the dynamic yield stress for the fine-grained material prove to be less than those of the initial coarse-grained specimens. This effect has been explained by a higher rate of stress relaxation in the fine-grained material. The hardening of tantalum under shock wave loading at a pressure in the range 40–100 GPa leads to a further increase in the rate of stress relaxation, a decrease in the dynamic yield stress, and the disappearance of the difference between its values for the coarse-grained and fine-grained materials. The spall strength of tantalum increases by approximately 5% with a decrease in the grain size and remains unchanged after the shock wave loading. The maximum fracture stresses are observed in tantalum single crystals.  相似文献   

16.
17.
Transmission Kikuchi diffraction (TKD), also known as transmission-electron backscatter diffraction (t-EBSD) is a novel method for orientation mapping of electron transparent transmission electron microscopy specimen in the scanning electron microscope and has been utilized for stress corrosion cracking characterization of type 316 stainless steels. The main advantage of TKD is a significantly higher spatial resolution compared to the conventional EBSD due to the smaller interaction volume of the incident beam with the specimen.Two 316 stainless steel specimen, tested for stress corrosion cracking in hydrogenated and oxygenated pressurized water reactor chemistry, were characterized via TKD. The results include inverse pole figure (IPFZ) maps, image quality maps and misorientation maps, all acquired in very short time (<60 min) and with remarkable spatial resolution (up to 5 nm step size possible). They have been used in order to determine the location of the open crack with respect to the grain boundary, deformation bands, twinning and slip. Furthermore, TKD has been used to measure the grain boundary misorientation and establish a gauge for quantifying plastic deformation at the crack tip and other regions in the surrounding matrix. Both grain boundary migration and slip transfer have been detected as well.  相似文献   

18.
The numerical study of high-rate plasticity of Cu target with different grain sizes under the action of nanosecond relativistic high-current electron beam has been carried out in the paper. The model of microcrystal material plasticity includes dislocation kinetics and dynamics as well as the stress relief in the grain boundaries of the polycrystal. This model has only two adjustable parameters. The presented results demonstrate a strong dependence of the shock wave attenuation coefficient on the grain size. At the grain size of about 70 nm, the plasticity mechanism of the dislocation glide inside grains changes to plasticity mechanism along grain boundaries.  相似文献   

19.
A theoretical model is proposed that describes the generation of deformation twins near brittle cracks of mixed I and II modes in nanocrystalline metals and ceramics. In the framework of the model, a deformation twin nucleates through stress-driven emission of twinning dislocations from a grain boundary distant from the crack tip. The emission is driven by both the external stress concentrated by the pre-existent crack and the stress field of a neighbouring extrinsic grain boundary dislocation. The ranges of the key parameters, the external shear stress, τ, and the crack length, L, are calculated within which the deformation-twin formation near pre-existent cracks is energetically favourable in a typical nanocrystalline metal (Al) and ceramic (3C-SiC). The results of the proposed model account for experimental data on observation of deformation twins in nanocrystalline materials reported in the literature. The deformation-twin formation is treated as a toughening mechanism effectively operating in nanocrystalline metals and ceramics.  相似文献   

20.
A model of the initial stage of plastic deformation in nanomaterials is proposed. Within this model, the plastic deformation occurs through grain boundary microsliding (GBM). The accommodation processes accompanying the formation of GBM regions are considered. The relationships describing the regularities in the deformation behavior of nanomaterials and the dependence of the flow stress on the grain size are derived, and the temperature dependence of the GBM resistance stress is calculated. It is demonstrated that the results obtained are in good agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号