首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a simple and rapid method for the preparation of a disposable palladium nanoparticle-modified graphite pencil electrode (PdNP-GPE) for sensing hydrogen peroxide (H2O2). The bare and PdNP-modified GPEs were characterized by cyclic voltammetry and SEM. The two electrodes displayed distinct electrocatalytic activities in response to the electrochemical reduction of H2O2. The amperometric detection limits were 45 nM and 0.58 mM, respectively, for the PdNP-GPE and bare-GPE, at an S/N of 3. The electrodes can be prepared simply and at low cost, and represent a promising tool for sensing H2O2.
Figure
?  相似文献   

2.
This paper describes the molecular recognition of phenylalanine derivatives and their peptides by the synthetic receptor cucurbit[7]uril (Q7). The 4-tert-butyl and 4-aminomethyl derivatives of phenylalanine (tBuPhe and AMPhe) were identified from a screen to have 20-30-fold higher affinity than phenylalanine for Q7. Placement of these residues at the N-terminus of model tripeptides (X-Gly-Gly), resulted in no change in affinity for tBuPhe-Gly-Gly, but a remarkable 500-fold increase in affinity for AMPhe-Gly-Gly, which bound to Q7 with an equilibrium dissociation constant (K(d)) value of 0.95 nM in neutral phosphate buffer. Structure-activity studies revealed that three functional groups work in a positively cooperative manner to achieve this extraordinary stability (1) the N-terminal ammonium group, (2) the side chain ammonium group, and (3) the peptide backbone. Addition of the aminomethyl group to Phe substantially improved the selectivity for peptide versus amino acid and for an N-terminal vs nonterminal position. Importantly, Q7 binds to N-terminal AMPhe several orders of magnitude more tightly than any of the canonical amino acid residues. The high affinity, single-site selectivity, and small modification in this system make it attractive for the development of minimal affinity tags.  相似文献   

3.
Diatomic gas molecules such as O2, CO and NO act as signaling molecules in many biological systems, where metal-containing gas sensor proteins sense their effector gas molecules by using prosthetic groups such as heme, iron-sulfur clusters and non-heme iron as the active center for gas sensing. When the gas sensor proteins sense their effector gas molecules, intramolecular and intermolecular signal transductions take place to regulate many physiological functions including gene expression, aerotaxis, and change in metabolic pathways, etc. The metal-containing prosthetic groups in these sensor proteins play a crucial role for selective sensing of their effectors. In this perspective, I will discuss the structure and function of some O2-, CO- and NO-sensor proteins, especially focussing on the structural, biochemical and biophysical properties of the active centers of these sensor proteins.  相似文献   

4.
A new polyammonium receptor is able to selectively recognise and sense ATP among triphosphate nucleotides, thanks to ATP-induced quantitative quenching of its fluorescence emission.  相似文献   

5.
以类金刚石碳膜(DLC)为工作电极,通过电化学方法来传感药物分子扑热息痛(PCT:paracetamol)和咖啡因(CF:caffeine).在室温条件下,pH为6.76的缓冲溶液中,通过循环伏安法可以分别和同时检测PCT和CF,并分别得到了对应的标准曲线.结果显示,在测试范围内PCT和CF的浓度都与峰电流呈良好的线性关系,DLC电极可以作为PCT和CF的生物传感器.  相似文献   

6.
The polarizable embedding (PE) model is a fragment-based quantum-classical approach aimed at accurate inclusion of environment effects in quantum-mechanical response property calculations. The aim of this tutorial review is to give insight into the practical use of the PE model. Starting from a set of molecular structures and until you arrive at the final property, there are many crucial details to consider in order to obtain trustworthy results in an efficient manner. To lower the threshold for new users wanting to explore the use of the PE model, we describe and discuss important aspects related to its practical use. This includes directions on how to generate input files and how to run a calculation.  相似文献   

7.
Arrays of nanoapertures in thin silver film were fabricated by deposition of metal through a self-organizing distribution of polystyrene nanospheres. We demonstrate that both the surface-enhanced Raman scattering (SERS) and fluorescence decay of probe molecules are strongly dependent on the plasmonic environment exhibited as fabricated nanostructures.  相似文献   

8.
Adsorption of bovine serum albumin, horse radish peroxidase, and green fluorescent protein on the hydrophilic silicon surface was studied. The possibility of preparing microstructured one-, two-, and three-component films on the solid surface by combining the methods of microcontact printing and self-arrangement of proteins from solution was demonstrated.  相似文献   

9.
The development of a miniaturized sensing platform for the selective detection of chemical odorants could stimulate exciting scientific and technological opportunities. Oligopeptides are robust substrates for the selective recognition of a variety of chemical and biological species. Likewise, semiconducting nanowires are extremely sensitive gas sensors. Here we explore the possibilities and chemistries of linking peptides to silicon nanowire sensors for the selective detection of small molecules. The silica surface of the nanowires is passivated with peptides using amide coupling chemistry. The peptide/nanowire sensors can be designed, through the peptide sequence, to exhibit orthogonal responses to acetic acid and ammonia vapors, and can detect traces of these gases from "chemically camouflaged" mixtures. Through both theory and experiment, we find that this sensing selectivity arises from both acid/base reactivity and from molecular structure. These results provide a model platform for what can be achieved in terms of selective and sensitive "electronic noses."  相似文献   

10.
The applicability of model polydiacetylenes (PDAs) in hydrogen ions sensitive optodes was tested. Nanofibers mats were electrospun using a mixture of polyvinyl chloride (PVC) and polycaprolactone (PCL) together with 10, 12-tricosadiynoic acid (TCDA) or 10,12-pentacosadiynoic acid (PCDA). After the polymerization the mats were applied in colorimetric and fluorimetric pH sensors. The PDAs were formed by photopolymerization with a UV lamp (254 nm), resulting in a change of mats color from white to dark blue. The morphology of both fiber mats is similar (SEM images), and the average diameters of fibers were estimated as equal to 228±73 and 248±61 nm for TCDA and PCDA, respectively. As the pH increases, the color of the fiber mat changes from blue to red and the process can be followed visually. The result obtained by computer image analysis showed a sigmoidal increase in the intensity of red and a decrease in the intensity of blue color with increasing pH. A similar sigmoidal response is observed for the dependence of the emission intensity on the pH. Changes in the recorded signal occur in the pH range from 7 to 8.5 or from 8 to 9.5 for mats with TCDA and PCDA, respectively. Both readout modes can be successfully used for pH sensing with proposed nanofibrous mats in the range of pH close to the physiological pH range.  相似文献   

11.
12.
Photoswitchable hybrid materials are successfully prepared by embedding guanidinium nitroprussides (GuNP, (CN3H6)2[Fe(CN)5NO]) into mesopores of transparent xerogel monoliths. The such prepared hybrid materials exhibit a higher photostability than the corresponding GuNP solutions, whereby the chemical stability of the [Fe(CN)5NO]2−-anion in titania gel is nearly infinite. By irradiation with light in the blue-green spectral range one nitrosyl isomer is formed by a 180° rotation of the NO ligand changing the Fe–NO into a Fe–ON coordination (SI), which is detected by the shift of the ν(NO) stretching vibration from 1945 cm−1 (Fe–NO) to 1820  cm−1 (Fe–ON). Consequently there is enough space around the NO-ligand for such movement in xerogel mesopores. The embedding in silica xerogels increases the achievable population of the isomeric nitrosyl configuration to about 15% with respect to a single crystalline powder where only 9% are reached.  相似文献   

13.
The pentacoordinated terpyridine-phenanthroline zinc(II) complex motif, conceived along the HETTAP concept, allows the preparation of a set of multicomponent supramolecular dumbbell and clip assemblies from various bisterpyridines. All assemblies show a notable luminescence at 350-400 nm. The formation of dumbbell [Zn2(1b)2(2b)]4+ is convincingly demonstrated from the X-ray crystal structure analysis. Both dumbbell [Zn2(1b)2(2b)]4+ and clip [Zn2(1d)(2b)]4+ allow the monitoring of Hg2+ ions due to highly selective quenching of the emission that is driven by a Zn2+ --> Hg2+ exchange process, while the more-strained clip [Zn2(1d)(2c)]4+ does not undergo such metal exchange and does not show quenching of the luminescence. Consequently, these assemblies exhibit a highly selective response due solely to supramolecular effects.  相似文献   

14.
Fluorescent photoinduced electron-transfer sensors were made from p-phenylenediamine-substituted azacrown ethers attached with a dansyl group, in which the p-phenylenediamine moiety serves as electron donor and the dansyl group acts as the acceptor. Chelation-enhanced fluorescence was observed upon addition of metal salts. Selective fluorescence response was observed for Mg(2+) and/or Ca(2+) versus Na(+) and K(+) due to size match and charge density sensitivity of the p-phenylenediamine moiety.  相似文献   

15.
In the past decade, there has been significant interest in the integration of biomaterials with electronic elements: combining biological functions of biomolecules with nanotechnology offers new perspectives for implementation of ultrasensitive hybrid nanodevices. In particular, great attention has been devoted to redox metalloproteins, since they possess unique characteristics, such as electron-transfer capability, possibility of gating redox activity, and nanometric size, which make them appealing for bioelectronics applications at the nanoscale. The reliable connection of redox proteins to electrodes, aimed at ensuring good electrical contact with the conducting substrate besides preserving protein functionality, is a fundamental step for designing a hybrid nanodevice and calls for a full characterization of the immobilized proteins, possibly at the single-molecule level. Here, we describe how a multitechnique approach, based on several scanning probe microscopy techniques, may provide a comprehensive characterization of different metalloproteins on metal electrodes, disclosing unique information not only about morphological properties of the adsorbed molecules but also about the effectiveness of electrical coupling with the conductive substrate, or even concerning the preserved biorecognition capability upon adsorption. We also show how the success of an immobilization strategy, which is of primary importance for optimal integration of metalloproteins with a metal electrode, can be promptly assessed by means of the proposed approach. Besides the characterization aspect, the complementary employment of the proposed techniques deserves major potentialities for ultrasensitive detection of adsorbed biomolecules. In particular, it is shown how sensing of single metalloproteins may be optimized by monitoring the most appropriate observable. Additionally, we suggest how the combination of several experimental techniques might offer increased versatility, real-time response, and wide applicability as a detection method, once a reproducible correlation among signals coming from different single-molecule techniques is established.  相似文献   

16.
Photophysical properties of polyethylene structures embedding aromatic fragments (benzene, anthracene, 4‐dicyanomethylene‐4H‐pyran, tryptophan, and estradiol) responsible for existence lowest electronically excited states were studied by new technique involving the elongation method applied to quantum‐chemical calculations. Absorption spectra and some photophysical properties were obtained. The comparison between the elongation and the conventional calculations was made, and it is shown that the elongation method is a powerful tool to determine the excited states as well as optical properties for large systems. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

17.
The effect of four general anesthetic molecules, i.e., chloroform, halothane, diethyl ether and enflurane, on the properties of a fully hydrated dipalmitoylphosphatidylcholine (DPPC) membrane is studied in detail by long molecular dynamics simulations. Furthermore, to address the problem of pressure reversal, the effect of pressure on the anesthetic containing membranes is also investigated. In order to ensure sufficient equilibration and adequate sampling, the simulations performed have been at least an order of magnitude longer than the studies reported previously in the literature on general anesthetics. The results obtained can help in resolving several long-standing contradictions concerning the effect of anesthetics, some of which were the consequence of too short simulation time used in several previous studies. More importantly, a number of seeming contradictions are found to originate from the fact that different anesthetic molecules affect the membrane structure differently in several respects. In particular, halothane, being able to weakly hydrogen bound to the ester group of the lipid tails, is found to behave in a markedly different way than the other three molecules considered. Besides, we also found that two changes, namely lateral expansion of the membrane and increasing local disorder in the lipid tails next to the anesthetic molecules, are clearly induced by all four anesthetic molecules tested here in the same way, and both of these effects are reverted by the increase in pressure.  相似文献   

18.
A naphthyridine-based charge neutral receptor has been designed and synthesized. Its complexation with a series of carboxylic acids involved in the Krebs cycle has been studied by 1H NMR, UV-vis and fluorescence methods. The receptor shows strong binding to citric acid (Ka = 1.60 × 105 M−1) and is also able to distinguish diastereomeric maleic acid from fumaric acid by fluorescence.  相似文献   

19.
A new approach for the detection of trimethylamine (TMA) using recombinant Xenopus laevis melanophores was developed. The cells were genetically modified to express the mouse trace amine-associated receptor 5 (mTAAR5), a G protein-coupled receptor from the olfactory epithelium, which conferred high sensitivity to TMA. A focused chemical screen allowed the discovery of additional, previously unknown stimuli of mTAAR5. The cell-based sensor demonstrated no sensitivity to trimethylamine N-oxide (TMAO), making it suitable for a convenient evaluation of TMA levels in fish tissue extracts. The developed gas measurement platform was able to detect TMA from 1 to 100 ppm within thirty-five minutes.  相似文献   

20.
A novel highly sensitive colorimetric receptor 1 for acetate based on N-(4-oxa-3-one-phenanthrene-2-carbonyl)-p-nitrophenylhydrazine was designed, synthesized and characterized. Experiments showed that the receptor 1 can selectively recognize acetate in DMSO solution and aqueous solution. The ability of recognition and the bond between receptor 1 and anions were determined using visual inspection, UV?CVis analyses and 1H NMR experiments. In particular, the UV?CVis analyses showed the whole process included two stages: in the first step, the hydrazine form of 1 interacted with acetate through hydrogen bonding with an obvious color change from yellow to purple upon addition of a small amount of AcO?. In the second step, as increasing the addition of AcO?, the color changed from purple to deep yellow, which displayed the deprotonation of the receptor 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号