首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider the Majorana CP violating phases derived from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models, namely degenerate, inverted hierarchical and normal hierarchical models, with tri-bimaximal mixings. Considering three possible diagonal forms of Dirac neutrino mass matrix as charged-lepton, up-quark or down-quark mass matrix within the framework of left-right symmetric GUT models, the right-handed Majorana mass matrices are constructed from the light Majorana neutrino mass matrix through the inverse seesaw formula. These light neutrino mass matrices have already been tested to provide good predictions on neutrino mass parameters and mixing angles. They are again applied to predict baryon asymmetry of the universe in the present work. The normal hierarchical model gives the best prediction for baryon asymmetry, consistent with observation. The analysis may serve as additional information in the discrimination of the presently available neutrino mass models.  相似文献   

2.
The mass, energy and momentum of the neutrino of a true flavor have an axial-vector nature. As a consequence, the left-handed truly neutral neutrino in an axial-vector field of emission can be converted into a right-handed one and vice versa. This predicts the unidenticality of masses, energies and momenta of neutrinos of the different components. Recognizing such a difference in masses, energies, momenta and accepting that the left-handed axial-vector neutrino and the right-handed antineutrino of true neutrality refer to long-lived C-odd leptons, and the right-handed truly neutral neutrino and the left-handed axial-vector antineutrino are of short-lived fermions of C-oddity, we would write a new CP-even Dirac equation taking into account the flavor symmetrical axial-vector mass, energy and momentum matrices. Their presence explains the spontaneous mirror symmetry violation, confirming that an axial-vector current conservation law has never violated. They reflect the availability of a mirror Minkowski space in which a neutrino is characterized by left as well as by right space-time coordinates. Therefore, it is not surprising that whatever the main purposes experiments about a quasielastic axial-vector mass say in favor of an axial-vector mirror Minkowski space-time.  相似文献   

3.
We study some general features of real neutrino mass matrices in the case of the three-family Electroweak Model with three right-handed neutrinos. The eigenvalue equation is expressed in terms of invariants of the submatrices (Dirac and Majorana) of the neutrino mass matrix and a geometrical interpretation of quantities which enter there is given.  相似文献   

4.
The cosmological baryon asymmetry can be explained by the nonperturbative electroweak reprocessing of a lepton asymmetry generated in the out-of-equilibrium decay of heavy right-handed Majorana neutrinos. We analyze this mechanism in detail in the framework of a SO(10)-subgroup. We take three right-handed neutrinos into account and discuss physical neutrino mass matrices.  相似文献   

5.
A complete set of fermion and Higgs superfields is introduced with well-defined SO(10) properties and U(1)xZ2xZ2 family charges from which the Higgs and Yukawa superpotentials are constructed. The structures derived for the four Dirac fermion and right-handed Majorana neutrino mass matrices coincide with those previously obtained from an effective operator approach. Ten mass matrix input parameters accurately yield the twenty masses and mixings of the quarks and leptons with the bimaximal atmospheric and solar neutrino vacuum solutions favored in this simplest version.  相似文献   

6.
In Asaka et al (2021 Phys. Rev. D 103, 015014), Asaka, Ishida and Tanaka put forward an interesting possibility that the neutrinoless double beta decay can be hidden in the minimal seesaw model with the two right-handed neutrinos having a hierarchical mass structure: the lighter one is lighter enough than the typical Fermi-momentum scale of nuclei while the heavier one is sufficiently heavy to decouple from the neutrinoless double beta decay. Then, in the basis where the mass matrices of the charged leptons and right-handed neutrinos are diagonal, for some particular texture of the Dirac neutrino mass matrix ${M}_{{\rm{D}}}^{}$, the neutrinoless double beta decay can be hidden. In this paper, on top of this specified model, we study the interesting scenario that ${M}_{{\rm{D}}}^{}$ further obeys the TM1 symmetry or μτ reflection symmetry which are well motivated by the experimental results for the neutrino mixing parameters.  相似文献   

7.
The aim of the KArlsruhe TRItium Neutrino experiment KATRIN is the determination of the absolute neutrino mass scale down to 0.2 eV, with essentially smaller model dependence than from cosmology and neutrinoless double beta decay. For this purpose, the integral electron energy spectrum is measured close to the endpoint of molecular tritium beta decay. The endpoint, together with the neutrino mass, should be fitted from the KATRIN data as a free parameter. The right-handed couplings change the electron energy spectrum close to the endpoint, therefore they have some effect also to the precise neutrino mass determination. The statistical calculations show that, using the endpoint as a free parameter, the unaccounted right-handed couplings constrained by many beta decay experiments can change the fitted neutrino mass value, relative to the true neutrino mass, by not larger than about 5-10%. Using, incorrectly, the endpoint as a fixed input parameter, the above change of the neutrino mass can be much larger, order of 100%, and for some cases it can happen that for large true neutrino mass value the fitted neutrino mass squared is negative. Publications using fixed endpoint and presenting large right-handed coupling effects to the neutrino mass determination are not relevant for the KATRIN experiment.  相似文献   

8.
We adapt the type II seesaw mechanism to the framework of the 3-3-1 model with right-handed neutrinos. We emphasize that the mechanism is capable of generating small masses for the left-handed and right-handed neutrinos and the structure of the model allows that both masses arise from the same Yukawa coupling. For typical values of the free parameters of the model we may obtain at least one right-handed neutrino with mass in the keV range. Right-handed neutrino with mass in this range is a viable candidate for the warm component of the dark matter existent in the universe.  相似文献   

9.
The seesaw mechanism in models with extra dimensions is shown to be generically consistent with a broad range of Majorana masses. The resulting democracy of scales implies that the seesaw mechanism can naturally explain the smallness of neutrino masses for an arbitrarily small right-handed neutrino mass. If the scales of the seesaw parameters are split, with two right-handed neutrinos at a high scale and one at a keV scale, one can explain the matter–antimatter asymmetry of the universe, as well as dark matter. The dark matter candidate, a sterile right-handed neutrino with mass of several keV, can account for the observed pulsar velocities and for the recent data from Chandra X-ray Observatory, which suggest the existence of a 5 keV sterile right-handed neutrino.  相似文献   

10.
The masses of the three generations of charged leptons are known to completely satisfy Koide's mass relation,but the question remains of whether such a relation exists for neutrinos.In this paper,by considering the seesaw mechanism as the mechanism generating tiny neutrino masses,we show how neutrinos satisfy Koide's mass relation,on the basis of which we systematically give exact values of both left-and right-handed neutrino masses.  相似文献   

11.
《Physics letters. [Part B]》1987,196(2):157-162
The proposal that the neutrino owes the smallness of its mass to the spontaneous breaking of R parity in superstring models with an additional gauge boson coupled to the right-handed neutrino is analysed. The right-handed neutrino can not in general decouple from the low-energy theory in models with supersymmetry at the TeV scale and which possess the light Higgs doublets necessary for generating fermion masses. Experimental limits on neutrino mass then imply an upper limit on the new gauge boson mass mZr ⪅ 220 GeV.  相似文献   

12.
We investigate symmetries in Dirac and Majorana mass matrices of neutrinos in a three-generation scenario. We show that if we invokeL e +L μ-L τ x S 2R symmetry, one combination of right-handed neutrino states remains massless which can be interpreted as a sterile neutrino. Next we consider a SU2L x U(1)y x U(l)R gauge model and show how higher-dimensional operators can induce mixing between left- and right-handed states which explains solar, atmospheric and LSND experimental results.  相似文献   

13.
In multi-field reheating after modular j-inflation we investigate the conditions under which baryogenesis via non-thermal leptogenesis can be successfully realized. We introduce three heavy right-handed neutrinos to the non-supersymmetric Standard Model of particle physics, assuming hierarchical neutrino masses. Considering a typical mass for the first right-handed neutrino of the order of \(10^{11}\) GeV, suggested from the seesaw mechanism and also from concrete SO(10) grand unification models, we obtain the allowed parameter space for viable baryogenesis. An upper bound for the inflaton mass as well as a lower bound for its branching ratio to the pair of lightest right-handed neutrinos are found and reported.  相似文献   

14.
Motivated by the Super-Kamiokande atmospheric neutrino data, we discuss possible textures for Majorana and Dirac neutrino masses within the see-saw framework. There are two main purposes of this paper: first, to gain intuition into this area from a purely phenomenological analysis, and second, to explore to what extent it may be realized in a specific model. We comment initially on the simplified two-generation case, emphasizing that large mixing is not incompatible with a large hierarchy of mass eigenvalues. We also emphasize that renormalization-group effects may amplify neutrino mixing, and we present semi-analytic expressions for estimating this amplification. Several examples are then given of three-family neutrino mass textures, which may also accommodate the persistent solar neutrino deficit, with different assumptions for the neutrino Dirac mass matrices. We comment on a few features of neutrino mass textures arising in models with a U(1) flavour symmetry. Finally, we discuss the possible pattern of neutrino masses in a “realistic” flipped SU(5) model derived from string theory, illustrating how a desirable pattern of mixing may emerge. Both small- or large-angle MSW solutions are possible, while a hierarchy of neutrino masses appears more natural than near-degeneracy. This model contains some unanticipated features that may be relevant in other models also: The neutrino Dirac matrices may not be related closely to the quark mass matrices, and the heavy Majorana states may include extra gauge-singlet fields. Received: 6 November 1998 / Published online: 18 June 1999  相似文献   

15.
Recent neutrino oscillation data indicates tri-bimaximal mixings. In this communication we propose degenerate, inverted hierarchical and normal hierarchical structures of neutrino mass matrices in terms of two input parameters. These mass matrices not only predict tri-bimaximal mixings but also neutrino oscillation mass parameters comparable with experimental data. We consider contribution of Type-II seesaw formula and observe possible deviations from tri-bimaximal mixings.  相似文献   

16.
When the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1) R Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1) R symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range.  相似文献   

17.
A supersymmetric model for accommodating the 17 KeV neutrino is proposed. The rank-two Majorana mass matrix for right-handed neutrinos can be obtained in a natural way. The neutrino spectrum is the same as that in the Glashow's model. The lifetime of the 17 KeV neutrino can satisfy the cosmological constraints.  相似文献   

18.
We show how to enlarge the νMSM (the minimal extension of the Standard Model by three right-handed neutrinos) to incorporate inflation and provide a common source for electroweak symmetry breaking and for right-handed neutrino masses. In addition to inflation, the resulting theory can explain simultaneously dark matter and the baryon asymmetry of the Universe; it is consistent with experiments on neutrino oscillations and with all astrophysical and cosmological constraints on sterile neutrino as a dark matter candidate. The mass of inflaton can be much smaller than the electroweak scale.  相似文献   

19.
For standard leptogenesis from the decay of singlet right-handed neutrinos, we derive source terms for the lepton asymmetry that are present in a finite density background but absent in the vacuum. These arise from cuts through the vertex correction to the decay asymmetry, where in the loop either the Higgs boson and the right-handed neutrino or the left-handed lepton and the right-handed neutrino are simultaneously on-shell. We evaluate the source terms numerically and use them to calculate the lepton asymmetry for illustrative points in parameter space, where we consider only two right-handed neutrinos for simplicity. Compared to calculations where only the standard cut through the propagators of left-handed lepton and Higgs boson is included, sizable corrections arise when the masses of the right-handed neutrinos are of the same order, but the new sources are found to be most relevant when the decaying right-handed neutrino is heavier than the one in the loop. In that situation, they can yield the dominant contribution to the lepton asymmetry.  相似文献   

20.
The equations connecting elements of the Yukawa matrix to elements of the active neutrino mass matrix in the νMSM theory (an extension of the Standard Model by a singlet of three right-handed neutrinos) was analyzed, and explicit relations for the ratio of the Yukawa matrix elements and elements of the active neutrino mass matrix were obtained. This relation can be used for getting more accurate constraints on the model parameters. Particularly, with the help of the obtained results we investigated CP-violating phase in the νMSM theory. We demonstrate that even in the case when elements of the active neutrino mass matrix are real the baryon asymmetry can be generated also.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号