首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristic features of the luminescence spectra of CdS semiconductor nanocrystals, crystallized in hollow channels in a dielectric template, are explained in terms of excitonic transitions in semiconductor-insulator quantum wires. The excitonic transition energies agree with the values calculated taking into account the effects of size quantization and the “dielectric enhancement of excitons” — the large increase in the electron-hole attraction as a result of the difference between the permittivities of the semiconductor and insulator. The theoretically computed binding energies of excitons in CdS quantum wires with a diameter of 10 nm reach 170 meV. It is shown that the excitonic transition energy is constant for a wide range of wire diameters. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 3, 216–220 (10 August 1999)  相似文献   

2.
Photoluminescence (PL) properties of 3-mercaptopropionic acid (MPA) coated CdTe/CdS core-shell quantum dots (QDs) in aqueous solution in the presence of ZnO colloidal nanocrystals were studied by steady-state and time-resolved PL spectroscopy. The PL quenching of CdTe/CdS core-shell QDs with addition of purified ZnO nanocrystals resulted in a decrease in PL lifetime and a small red shift of the PL band. It was found that CdTe(1.5 nm)/CdS type II core-shell QDs exhibited higher efficiency of PL quenching than the CdTe(3.0 nm)/CdS type I core-shell QDs, indicating an electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals. The experimental results indicated that the efficient electron transfer process from CdTe/CdS core-shell QDs to ZnO nanocrystals could be controlled by changing the CdTe core size on the basis of the quantum confinement effect.  相似文献   

3.
CdS quantum dots (QDs) have been electrodeposited onto textured gold substrates from a nonaqueous electrolyte containing Cd(ClO4)2and elemental S. The initial deposit consisted of very small (about 3 nm) nanocrystals of CdS which were partially oriented with the Au substrate. With increasing deposit thickness, the crystal size increased and the degree of orientation decreased. Photocurrent spectroscopy and IV spectroscopy, using a conducting scanning force microscope tip, were used to measure the CdS bandgap variations due to size quantization. The latter method also revealed room temperature conductivity peaks assigned to Coulomb charging of the QDs and evidence for charge tunneling into higher discrete energy levels.  相似文献   

4.
The structures with CdS, PbS, and ZnS quantum dots produced using the Langmuir-Blodgett method are investigated by infrared (IR) spectroscopy, Raman scattering, and ultraviolet (UV) spectroscopy. The quantum dot size estimated from the UV spectra and high-resolution transmission electron microscopy (HRTEM) falls in the range 2–6 nm. The longitudinal optical (LO) phonons localized in quantum dots and the surface optical vibration modes are revealed in the IR reflection and Raman scattering spectra of the structures under investigation. The frequencies of the surface optical modes are adequately described with allowance made for the effect of localizing optical phonons in the quantum dots.  相似文献   

5.
Structures with CdS quantum dots produced by the Langmuir–Blodgett (LB) technique were investigated by Raman, IR, and UV spectroscopies. The confinement effect of longitudinal optical (LO) phonons in CdS quantum dots was investigated by Raman spectroscopy. Surface vibrational modes of CdS quantum dots were observed in IR spectra. It was shown experimentally that the frequency of the surface vibrational modes depends on the properties of the surrounding media. An average size of CdS quantum dots of about 3–6.4 nm was obtained from the analysis of UV measurements. Received: 1 February 1999 / Accepted: 1 April 1999 / Published online: 19 May 1999  相似文献   

6.
玻璃中CdSSe纳米晶体的光谱性能   总被引:4,自引:2,他引:2       下载免费PDF全文
对掺有镉、硒、硫的玻璃在650—800℃退火4?h,生长了不同尺寸的CdS0.13Se0.87纳米晶体,测量了纳米晶体的吸收光谱、光致发光(PL)谱和电调制光谱,确定了纳米晶体部分电子态的能量,讨论了CdSSe纳米晶体的光学性质与其尺寸之间的依赖关系.随着纳米晶体尺寸的增大,对应激子的吸收峰、PL峰及电吸收信号发生红移,表现出明显的量子尺寸效应.小尺寸纳米晶体的电吸收表现为量子受限的Stark效应,而大尺寸纳米晶体的电吸收线形与体材料的相似;随着纳米晶体尺寸的增大,电吸收信号增强.所有尺寸的纳米晶体都表现 关键词: CdSSe纳米晶体 吸收光谱 光致发光谱 电光响应  相似文献   

7.
In this work, highly stable, soluble and luminescent CdS quantum dots (QDots) with a narrow size distribution were synthesized in ethylene glycol using the polyol process and the solvothermal technique. In this case instead of using a conventional highly toxic sulfur source like H2S, we use elemental sulfur dissolved in ethylene glycol to perform the reaction. When the solvent reaches its boiling point inside the autoclave, sulfur is reduced to S?2 and reacts with Cd+2 ions to form CdS nanocrystals. Analysis of the spectroscopic and TEM measurements showed that 3 nm monodispersed CdS QDots were synthesized and exhibited high photoluminescence (PL) in the blue green region of the spectra when excited with 355 nm.  相似文献   

8.
ZnO nanorods have been grown using ZnO seed layer onto ITO-coated glass substrates. CdS quantum dots have been deposited onto ZnO nanorods using simple precursors by chemical method and the assembly of CdS quantum dots with ZnO nanorod has been used as photo-electrode in quantum dot-sensitized solar cells. X-ray diffraction results show that ZnO seed layer, ZnO nanorods, and CdS quantum dot-sensitized ZnO nanorods exhibit hexagonal structure. The particle size of CdS nanoparticle is 5 nm. The surface morphology studied using scanning electron microscope shows that the top surface of the vertically aligned ZnO nanorods is fully covered by CdS quantum dots. The ZnO nanorods have diameter ranging from 100 to 200 nm. The absorption spectra reveal that the absorption edge of CdS quantum dot-sensitized ZnO nanorods shift toward longer wavelength side when compared to the absorption edge of ZnO. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 0.69% and is the best efficiency reported so far for this type of solar cells.  相似文献   

9.
We present Raman-scattering results for CdTe nanocrystals in doped glasses which clearly show the confinement effects on the phonon spectra as a function of the quantum-dot size. We observed optical phonon modes, surface phonons and some of their overtone combinations. We show that the surface-phonon scattering intensity increases as the quantum-dot size decreases. Our results also show a decrease in the electron–phonon coupling as the nanocrystal size is decreased. These confinement effects are observed by changing the laser excitation energy, and thus by tuning to resonance with the optical transitions for quantum dots of different sizes within their broad size distribution in semiconductor-doped glasses.  相似文献   

10.
掺杂Mn2+的浓度对CdS纳米颗粒光致发光的影响   总被引:2,自引:2,他引:0  
采用反胶束法,合成了硅土包裹的掺有不同浓度的Mn2 的CdS纳米颗粒.高分辨电镜表明这些颗粒的直径小于5 nm.仅仅改变Mn2 的掺杂浓度,研究了这些颗粒的光致发光谱和光致发光激发谱,结果表明:Mn2 浓度的大小对掺杂CdS纳米颗粒的发光产生了重要的影响.通过电子顺磁共振谱的测量和分析揭露了Mn2 浓度影响这些掺杂颗粒发光效率的原因.  相似文献   

11.
A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle X-ray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).  相似文献   

12.
马锡英  施维林 《物理学报》2003,52(4):1034-1038
研究了利用层-层自组织生长法制备的磺化聚苯胺-CdS纳米晶体复合膜的光学特性.研究发现,随样品中CdS 纳米晶体尺寸的减小,量子尺寸效应明显增强;在紫外吸收谱中表现为吸收边出现了明显蓝移;在光致发光谱中,不仅激子直接复合产生的带边发射产生了蓝移,而且陷阱态复合产生的宽带发射也发生了蓝移.还发现样品经低温退火处理后,激子复合产生的带边发射显著增强,发射带宽随纳米尺寸的减小而变窄.这说明退火后CdS 纳米晶粒的有序性和均匀度显著增加. 关键词: CdS 纳米晶体 SPAn 吸收 发光  相似文献   

13.
The electronic and optical properties of a single exciton in a CdSe/CdS/CdSe/CdS quantum dot is studied by using effective mass approximation with parabolic confinement. The Coloumbic interaction between electron and hole is included by Hartree potential. A self-consistent technique is used to calculate the energy eigenvalue and wavefunction of exciton. Based on this approximation we investigate the effect of core size, shell thickness, well width on exciton binding energy, absorption spectra, and oscillator strength. The results provide the tuning possibility of electronic and optical properties of multilayer quantum dot with layer thickness.  相似文献   

14.
Features of the photoluminescence spectra observed for various polarizations and intensities of the pumping radiation and the kinetics of photoluminescence of the CdS and CdSe nanocrystals grown in hollow nanochannels of an Al2O3 matrix are explained in terms of exciton transitions in semiconducting quantum wires with dielectric barriers. The observed exciton transition energies coincide with the values calculated with an allowance for the effects of quantum confinement and the “dielectric enhancement” of excitons. The latter effect is manifested by a significant increase in the Coulomb attraction between electrons and holes (the exciton binding energy exceeds 100 meV) due to a difference between the permittivities of semiconductor and insulator. It is shown that the exciton transition energy remains constant when the quantum wire diameter varies within broad limits. This is related to the fact that a growth in the one-dimensional bandgap width of the quantum wire caused by a decrease in the diameter is compensated by an increase in the exciton binding energy.  相似文献   

15.
The microwave (MW) assisted synthesis of thiol capped cadmium sulfide (CdS) nanocrystallites/quantum dots (QDs) was performed through the reaction of cadmium acetate with thiourea in N,N-dimethylformamide (DMF) by keeping the MW irradiation time fixed (40 s) in the presence of a thiol containing capping agent. Three capping agents, namely, benzyl mercaptan (BM), 1-butanethiol (BT) and 2-mercaptoethanol (ME) were used. The concentration of the precursors was varied to check the change in the average size of the thiol capped CdS nanocrystals formed. The nanocrystallites were characterized by usual procedure. The UV-vis absorption spectra and the photoluminescence (PL) spectra of the CdS nanocrystalline powders dispersed in DMF were studied. It was observed that with increase in concentration of the capping agent (BM), there is a shift in the nature of emission (PL) from trap associated PL to the band edge luminescence in the case of BM capped CdS nanocrystalline powders dispersed in DMF possibly due to better surface passivation. The relative PL quantum yield of the thiol capped CdS nanocrystalline powders dispersed in DMF was calculated under various experimental conditions. Time-correlated single-photon counting experiments were performed to study the time-resolved photoluminescence of the CdS nanocrystalline powders dispersed in DMF. The observed emission decay profiles have been simulated using the multiexponential model. The emission decay profiles for thiol capped CdS nanocrystalline powders dispersed in DMF depend on the nature of the capping agents (thiols) used to passivate the CdS nanocrystallites. The time resolved PL studies show that the average values of PL lifetime are related to the size and size distribution of the prepared thiol capped CdS nanocrystallites.  相似文献   

16.
采用钛酸四丁酯醇热技术制备了TiO2纳米晶溶胶,透射电子显微镜(TEM)照片显示其为粒径小于10nm的类球形形貌。该纳米晶在最大激发波长375nm激发下,在450nm处产生稳定的强荧光。不同浓度TiO2纳米晶的荧光光谱和吸收光谱表明,该发光带不仅受粒子量子尺寸效应的影响还与带内缺陷能级和表面态的电子跃迁有关,是三者共同作用的结果。以硫酸奎宁在激发波长313nm的荧光量子产率0.55为标准,测得TiO2纳米晶在不同激发波长下的荧光量子产率。结果表明,TiO2纳米晶在激发波长330~370nm范围内有较高的荧光量子产率(约为0.20),远高于文献报道值(10-3数量级)。据此,TiO2纳米晶有望成为一种有前途的无机纳米荧光探针。  相似文献   

17.
CdS nanocrystals with narrow size distribution were synthesized in an organic solution and transparent CdS nanocrystals/polystyrene composite films were fabricated. Transmission electron microscopy, energy dispersive X-ray spectroscopy, photoluminescence and Raman spectra were adopted to investigate these samples. The result of photoluminescence measurement shows that the composite films exhibit distinct luminescence properties of more stable emission and a narrower full-width at half-maximum than that of CdS nanocrystals in solution. Detailed analysis of the Raman spectra has enabled us to identify the origin of the optimized optoelectronic properties of the CdS nanocrystals-polystyrene composites films.  相似文献   

18.
Nonlinear optical properties of semiconductor quantum wires   总被引:1,自引:0,他引:1  
Nonlinear optical transmission at discrete frequencies (bleaching bands) has been observed in CdSe and GaAs quantum wires crystallized in chrysotile asbestos nanotubes with average diameter ≈ 6 nm and in nanocrystals of CdS (crystallized in the transparent molecular filter—mica with empty channels of designed diameter). The induced decrease of absorption in quantum wires has been explained by filling of the size-quantized energy bands with nonequilibrium carriers (saturation effect) and by the phase-space filling of excitons.  相似文献   

19.
It is shown that the mixed character of spheroidal vibrational modes of semiconductor quantum dots of spherical shape may lead to the appearance of a line in the low-frequency Raman spectra of nanocrystals whose spec-tral position is independent of the average radius of nanocrystals in the sample over a wide range of sizes. This effect is associated with the rapid saturation of the dispersion dependence for transversal acoustic phonons in the bulk semiconductor. The maximum radius of quantum dots at which the line indicated above is observed in the spectrum has been estimated.  相似文献   

20.
吴仍来  肖世发  薛红杰  全军 《物理学报》2017,66(22):227301-227301
量子点体系等离激元的研究是光电子学领域的热点.为进一步加深和完善对等离激元的量子效应的认识,本文利用紧束缚近似和线性响应理论研究了二维方形量子点体系对外场的集体响应.结果表明,当外场频率等于等离激元的频率时,量子点体系会有强烈的电荷振荡,并伴随着能量的极大吸收和近场的增强.在量子点中,等离子体存在分立的元激发.等离子体元激发的个数将随着量子点尺寸和电子个数的增加而增加.随量子点尺寸的增加,分立的等离激元将逐步呈现准连续的特性,即过渡为经典连续的等离激元,其频谱曲线演化为经典的色散曲线.结果还表明:随量子点尺寸的增加,等离激元的频率会红移,等离激元的激发强度会增大;随量子点中电子数的增加,等离激元的频率会蓝移,等离激元的激发强度会增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号