首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙小惠  努扎艾提·艾比布  杜虹 《催化学报》2021,42(1):235-243,后插50-后插52,封3
氢气是一种环境友好可再生的清洁能源,电解水无疑是一种很好的制氢方法.然而,电催化分解水析氢受到其缓慢的动力学过程、较低的催化性能和较差的稳定性的限制.为了使整个过程更节能,具有高电流密度和低的过电势的高效电催化剂被广泛研究.非化学计量相硒化钴(Co0.85Se)作为一种重要的金属硫属化合物具有优异的催化性能而广受关注.但是低维的Co0.85Se活性位点少,分散性差,电子传递能力低,导致其电催化剂活性差.多壁碳纳米管(MWCNTs)具有多种电性能,包括金属导电性和电子存储能力等.因此,MWCNTs的特殊结构和高导电性可以有效地促进电子从电催化剂向碳纳米管的转移,实现高效电分解水制氢性能.本文在不使用表面活性剂和模板的情况下,通过一步水热溶剂热法合成弱磁性Co0.85Se纳米片负载碳纳米管电催化剂.采用磁滞回线研究Co0.85Se和MWCNTs/Co0.85Se的磁性能,结果表明其有弱顺磁性,Co0.85Se纳米片之间的空间距离增强导致粒子间偶极相互作用减弱,从而使MWCNTs/Co0.85Se纳米复合材料的矫顽力值增加到158 Oe.随着微晶尺寸的减小和纳米颗粒间距的增大,MWCNTs/Co0.85Se催化剂的比表面积增大,有利于提高其电催化活性.扫描电镜和透射电镜展示出Co0.85Se纳米片分散性较差,且团聚现象严重,而MWCNTs/Co0.85Se纳米复合催化剂显示Co0.85Se纳米片均匀分散在MWCNTs表面,且纳米片尺寸明显减小,有利于Co0.85Se纳米片暴露更多的活性位点.线性扫描伏安曲线测量表明,在酸性溶液中Co0.85Se纳米片在电流密度为10 mA cm?2时,其过电势为319 mV(vs.RHE),30 wt%MWCNTs/Co0.85Se的过电势为266 mV(vs.RHE).Co0.85Se和MWCNTs/Co0.85Se的Tafel斜率分别为92.6和60.5 mV dec?1.此外,MWCNTs/Co0.85Se的电流交换密度(j0)为0.07 mA cm?2.较小的Tafel斜率和高的电流交换密度表明,MWCNTs/Co0.85Se具有良好的反应动力学和快速的质子分离速率.交流阻抗谱表明MWCNTs/Co0.85Se比Co0.85Se电阻更小,电子传输速率更快.电化学活性表面积与双电层在固液界面处的电容测量值成正比.结果显示,30 wt%MWCNTs/Co0.85Se的双电层电容为0.22 mF cm^-2,高于Co0.85Se和15 wt%的rGO/Co0.85Se(0.04 mF cm^-2,0.17 mF cm^-2),这表明较大的电化学活性表面积有利于析氢反应进行.30 wt%MWCNTs/Co0.85Se的循环稳定测试表明其具有较好的稳定性.综上,本文介绍了通过一步水热法合成具有弱磁性的Co0.85Se和MWCNTs/Co0.85Se电催化剂,碳纳米管作为一种高导电性材料被引入Co0.85Se纳米片中以减少Co0.85Se的团聚,使Co0.85Se的活性位点增加,进而提高电催化制氢性能.  相似文献   

2.
Ternary Ni–Mo–P thin films have been electrodeposited from citrate‐based electrolyte onto graphite substrates for application as anode catalysts for ethanol electrooxidation. The operating deposition parameters were optimized to produce Ni–Mo–P alloy films of outstanding catalytic activity. The phase structure of the deposits was evaluated employing X‐ray diffraction technique. Morphology and chemical composition of the deposited alloy films were studied using scanning electron microscopy and energy‐dispersive X‐ray analysis, respectively. The results demonstrated that the rate of Ni–Mo–P deposition increases with increasing the ammonium molybdate concentration in the plating electrolyte up to 10 g l?1. Also, the amount of Mo in the deposits increases with increasing the ammonium molybdate concentration up to 7.5 g l?1, and the maximum Mo content in the film was 9.1 at.%. The catalytic activity of Ni–Mo–P/C alloy films has been evaluated towards electrooxidation of ethanol in 1.0 M NaOH solution by using cyclic voltammetry and chronoamperometry. The catalytic performance of the prepared anodes as a function of the amount of Mo was studied. The results showed an increase in the oxidation peak current density of ethanol with increasing the Mo at.% in the deposited alloy films. Additionally, Ni–Mo–P/C electrodes displayed significantly improved catalytic activity and stability towards electrooxidation of ethanol compared with that of Ni–P/C electrode. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrogen absorption in Ni–Pd alloys has been investigated. The amount of absorbed hydrogen in alloys containing below 20 at.% of nickel is equal to the amount of hydrogen sorbed in pure palladium. Hydrogen absorption occurs in the range 0–40 at.% of nickel concentration. Cyclic voltammograms recorded at Ni–Pd alloys have characteristic peaks which overlap with the responses due to processes occurring on the surface at Ni and Pd atoms. Also some of the processes characteristic of the pure metals can be distinguished from the recorded voltammograms.  相似文献   

4.
The Ni–P alloy coatings were obtained on alumina borate whisker‐reinforced pure aluminum composite by electro‐deposition. The initial electro‐deposition behavior of the Ni–P alloys on the composite and pure aluminum was studied, respectively. It was found that the composition and the morphology of materials had a distinct effect on the initial electro‐deposition behavior of the Ni–P alloys. The Ni–P alloy coatings preferred to nucleate at the composite as compared with the pure aluminum. Moreover, the Ni–P particles were prone to deposit at the whisker/Al interface in the composite. The Ni–P coatings were barely depositing upon the surface of whisker during the plating process. As the deposition time increased, the Ni–P particles that were deposited on the surface of the composite grew gradually. These Ni–P particles linked to each other and eventually covered the whisker surface. Moreover, it can be found that the surfaces of the composite were gradually covered by Ni–P coatings and the anticorrosion performance of the coated composite increased remarkably with the increase in the deposition time. When the deposition time is 60 min, only the Ni–P diffraction peak could be detected. In this case, the coated composite had significantly better corrosion resistant, which is attributed to the surface of composite was perfectly covered by the Ni–P coatings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
氢气因其能量密度高、零排放和可再生的特点被广泛认为是最有前景的能源.电解水是一种产生高纯氢气的有效途径.目前,高性能的促进水电解的催化剂主要是贵金属材料,例如贵金属铂.然而,高成本大大阻碍了贵金属材料在电催化水分解中的广泛应用.因此,我们致力于研究具有高活性的非贵金属催化剂.因为电催化水分解析氢反应更容易发生在质子浓度高的条件下,所以研究碱性条件下催化析氢比研究酸性条件下催化析氢更具挑战性.在工业应用中,酸性电解质溶液对仪器设备的腐蚀性比碱性溶液更大,因此研究应用在碱性溶液中的析氢催化剂更有发展前景.过渡金属磷化物被广泛地研究作为高性能析氢电催化剂,然而过渡金属磷化物作为析氢催化剂的稳定性通常不是很好.我们通过钼元素的引入,提高过渡金属磷化物作为析氢催化剂的稳定性.电化学催化效率同样受到材料形貌和导电性的影响.大的比表面积有利于暴露更多的活性位点,使活性位点与电解质溶液的接触更加充分,有利于催化剂和溶液之间的传质.据报道,金属磷化物具有良好的导电性是由于磷化物中存在金属-金属键.所以合成具有大比表面积形貌的过渡金属磷化物材料能够满足析氢电催化剂对比表面积和导电性的两个需求.界面效应是调节催化剂性能的一个有效方法.析氢催化剂常常存在吸附质子能力过强或过弱、稳定性不好等问题.这些问题可以通过界面效应来解决.本文通过形成磷化估和钼钴氧的界面来调节改善磷化钴表面原来的电子密度,以达到理想的氢吸附自由能;同时此界面效应还能起到稳定催化剂性能的作用.本文首先采用水热法合成了红毛丹状钼钴氧空心微米小球前驱体.在钼酸根离子的引导下,利用奥斯特瓦尔德熟化原理一步实现了红毛丹状空心结构.前驱体再以次亚磷酸钠为磷源进行气相磷化,得到产物红毛丹状磷化钴@钼钴氧空心微米小球.通过扫描电镜和透射电镜对其红毛丹状空心结构进行了表征.利用X射线衍射和X射线光电子能谱等手段表征了材料的物相组成和价态分布.电化学测试均使用电化学工作站完成.该材料在碱性电解质溶液中展现了极好的电化学催化析氢性能,在电流密度为10 mA cm^-2时对应的析氢过电位仅为62 mV.在1 MKOH溶液中10 mA cm^-2电流密度下测试55 h,过电位仅增大约17 mV,显示了非常强的碱性析氢稳定性.得益于磷化钴和钼钴氧之间的界面效应,以及特殊的三维空心结构,红毛丹状磷化钴@钼钴氧空心微米小球表现出优异的析氢催化性能和稳定性.  相似文献   

6.
周亚楠  朱宇冉  闫新彤  曹羽宁  李佳  董斌  杨敏  李庆忠  刘晨光  柴永明 《催化学报》2021,42(3):431-438,中插25-中插28
电催化析氢(HER)是清洁制氢的一种有效途径,对于氢经济和氢能产业的发展具有重要意义.金属掺杂是提高电催化剂本征活性的有效方法,导电基底的采用也有利于电荷传输和催化性能的整体提高.尽管已有关于硒化物作为HER催化剂的相关报道,但是合成条件有限、导电性、本征活性的影响,其电催化性能仍有提升的空间.此外,在酸性电解液中的腐...  相似文献   

7.
Electroless Ni–P and Ni–Cu–P coatings were passivated by chromate conversion treatment respectively. The anticorrosive performances of passivated coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The passivated Ni–Cu–P coating exhibited a high corrosion resistance with the icorr of 0.236 μA/cm,2 while the value of passivated Ni–P coating was only 1.030 μA/cm,2 indicating the passive film could improve the corrosion resistance of Ni–Cu–P coating to a significant extent. High‐resolution X‐ray photoelectron spectroscopy was used to determine the chemical states of elements detected in the passive film. Compared with passivated Ni–P coating, the passive film on Ni–Cu–P coating exhibited a higher ratio of Cr2O3 to Cr(OH)3 with the value of 72:28, which was the main factor for passivated Ni–Cu–P coating showing excellent corrosion resistance. The effect of Cu in electroless Ni–Cu–P coating on passivation process was discussed by the contrast experiment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this experimental work the influence of co-existing gases on the hydrogen permeation through a Ti–Ni–Pd membrane was studied. It was found that nitrogen, carbon dioxide and helium do not influence the hydrogen permeation through the dense membrane. However, carbon monoxide influences the hydrogen flux at each temperature investigated (400–500 °C). The results show that for low CO concentration (i.e. at H2 upstream >80%), the hydrogen flux through the membrane decreases faster than linearly, while, at H2 upstream <80%, the slope is linear but smaller than the theoretical one.  相似文献   

9.
Water electrolysis is a promising method for hydrogen production, so the preparation of low-cost and efficient electrocatalysts with a quick and simple procedure is crucial. Herein, iron phosphate (Fe7(PO4)6) was prepared via microwave radiation using ionic liquid (IL) as iron and phosphorus dual-source. This method is simple and rapid, and the product can be directly used as electrocatalysts without further treatment. The experimental results show that the IL can influence the morphology and electrocatalytic performance. Moreover, the addition of carbon nanotubes (CNTs) is favorable for formation of iron phosphate nanoparticles to improve the catalytic activities. As hydrogen evolution reaction (HER) catalyst, this iron phosphate/CNTs exhibits an onset overpotential of 120 mV, Tafel slope of 32.9 mV dec-1, and current densities of 10 mA cm−2 at overpotential of 185 mV. Then, it obtains a good activity for oxygen evolution reaction (OER) with a low onset potential of 1.48 V, Tafel slope of 73.3 mV dec-1, and it only needs an overpotential of 300 mV to drive the 10 mA cm−2. This bifunctional catalyst also shows good durability for HER and OER. This microwave-assisted method provides an outstanding strategy to prepare iron phosphate in a simple and fast process with good catalytic performance for water splitting.  相似文献   

10.
A new environmentally friendly electroplating bath for Ni–Cu alloy deposition was developed. Lactic acid was used as a complexing agent. The influence of bath composition, current density, pH and temperature on cathodic polarization, cathodic current efficiency and alloy composition was studied. Different proportions of the two metals were obtained by using different deposition parameters, but at all [Ni2+] / [Cu2+] ratios studied, preferential deposition of Cu occurred and regular co‐deposition took place. The Ni content of the deposit increased with Ni2+ content and current density and decreased with temperature. The surface morphology of the deposited Ni–Cu alloy was investigated using scanning electron microscopy. The crystal structure was examined using the X‐ray diffraction technique. The results showed that the deposits consisted of a single solid solution phase with a face‐centered cubic structure. The crystallite size lies in the range of 12 to 25 nm for as‐plated alloys. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Herein, we highlight redox‐inert Zn2+ in spinel‐type oxide (ZnXNi1?XCo2O4) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen‐evolving condition, the newly formed VZn?O?Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn–air battery is constituted employing the structurally optimized Zn0.4Ni0.6Co2O4 nanoparticles supported on N‐doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm?2), high open circuit potential (1.48 V vs. Zn), excellent durability, and high‐rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnXNi1?XCo2O4 oxides after the OER test.  相似文献   

12.
In the present work, we have investigated the formation of nanostructured oxide layers by anodic oxidation on different surface finished (mirror finished, 600 and 400 grit polished) nickel–titanium alloy (Ni–Ti) in electrolyte solution containing ethylene glycol and NH4F. The anodized surface has been characterized by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and X‐ray photoelectron spectroscopy (XPS). The corrosion behaviors of the Ni–Ti substrate and anodized samples have been investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization in simulated body fluid (Hanks' solution). The results show that the native oxide on the substrate is replaced by nanostructures through anodization process. XPS of Ni–Ti substrate shows the presence of Ni0, NiO, Ti0 and TiO2 species, whereas Ni2O3 and Ni(OH)2 and TiO2 are observed in the samples after anodization. Corrosion resistance of the anodized sample is comparable with that of the untreated sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
An open metal site framework named UTSA‐16 was synthesized and modified as a high‐capacity adsorbent for reversible CO2 capture. Partial substitution of intrinsic Co2+ sites of UTSA‐16 with Ni2+ centres was realized in the molar composition range 0–75% Ni with the aim of increasing CO2 uptake. Synthesized bimetallic Nix‐UTSA‐16 (x = 0, 20, 50, 75) materials were characterized using various techniques to assess the influence of chemical composition on CO2 binding affinity and any subsequent physical change in morphology, crystal size and porosity on the total uptake. Experimental isotherm adsorption studies showed the following trend for CO2 adsorption capacity employing the Nix‐UTSA‐16 series: Ni20‐UTSA‐16 > UTSA‐16 > Ni50‐UTSA‐16 > Ni75‐UTSA‐16. According to the dynamic breakthrough CO2 profiles measured for a mixture of CO2 and CH4 (15/85 molar ratio), Ni20‐UTSA‐16 exhibited 2 times the breakthrough time with 1.5 times the loading capacity at 75 Nml min?1 feed flow rate, compared to the parent UTSA‐16. In addition, the Ni20‐UTSA‐16 bimetallic metal–organic framework exhibited lower isosteric heat of adsorption compared to UTSA‐16 (ΔHave = 28.54 versus 46.85 kJ mol?1). As a result, more than 95% of its capacity was restored by applying a partial vacuum for only 1 h at room temperature without involving any other time‐ and energy‐consuming regenerative step.  相似文献   

14.
A novel Ni‐based metal–organic framework (Ni‐MOF) with a Schiff base ligand as an organic linker, Ni3(bdda)2(OAc)2?6H2O (H2bdda = 4,4′‐[benzene‐1,4‐diylbis(methylylidenenitrilo)]dibenzoic acid), was synthesized and characterized using powder X‐ray powder diffraction, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, elemental analysis and Fourier transform infrared spectroscopy. The synthesized Ni‐MOF exhibited a high catalytic activity in benzyl alcohol oxidation using tert‐butyl hydroperoxide under solvent‐free conditions. Also, the efficiency of the catalyst was investigated in the cascade reaction of oxidation–Knoevanagel condensation under mild conditions. The Ni‐MOF catalyst could be recovered and reused four times without significant reduction in its catalytic activity.  相似文献   

15.
为简化电解水催化剂的合成过程和优化电解水操作系统, 双功能电解水催化剂的研究, 特别是在碱性条件下同时具有优异催化氢析出和氧析出反应性能的双功能电催化剂的研究尤为重要. 其中, 过渡金属硫化物, 特别是 CoNi 硫化物, 被报道有与氢化酶类似的催化活性中心, 从而具有优异的催化氢析出和催化氧析出反应性能. 虽然有关对过渡金属硫化物的研究很多, 但主要集中在具有一维纳米线和二维纳米片形貌结构的过渡金属硫化物. 不幸的是, 这些形貌结构的过渡金属硫化物在电催化过程中容易聚集和受限于电荷传输能力. 三维纳米结构的材料具有较大的比表面积以分布更多的活性位点和拥有良好的电子传输能力, 所以, 开发三维纳米结构的过渡金属硫化物材料可能是改进其催化电解水性能的一个好途径. 本文采用简单的两步水热法, 通过硫化合成的 CoNi 前体得到了长于泡沫镍上的三维百合花状的 CoNi2S4(Co-Ni2S4/Ni). 它只需要 54 mV 的过电位即可获得 10 mA cm-2的催化氢析出反应电流, 是最好的碱性催化氢析出反应电极材料之一. 它在驱动 100 mA cm-2的催化氧析出反应电流时也只需要 328 mV 的过电位. 另外, 把 CoNi2S4/Ni 分别作为阴极和阳极组装成双电极碱性水电解槽时, 它只需要 1.56 V 的电压即可获取 10 mA cm-2的催化全电解水电流并具有良好的催化全电解水稳定性.扫描电子显微镜、透射电子显微镜和 N2吸脱附曲线测试结果表明, 该三维百合花状的 CoNi2S4/Ni 的表面粗糙度高和拥有多孔特性. 多孔结构的 CoNi2S4/Ni 可提供更多可接触的催化活性位点, 也有利于催化过程中的电解质和生成的气体的扩散与传递. 交流阻抗图谱测试结果表明, CoNi2S4/Ni 具有良好的电子传输能力. 另外, 不同于前期对尖晶石结构的硫化物 AB2S4的研究结果, XPS 结果表明, CoNi2S4/Ni 中含有 Niб+和 Sб-活性物种, 表明 CoNi2S4具有与活性氢化酶类似的活 性中心. Niδ+和 Sδ-可分别作为氢氧根和质子的接收体, 协助促进吸附的水分子的分离, 从而提高材料的催化性能. 所以, Niδ+和 Sδ-活性物种的出现, 大比表面积的三维百合花状多孔结构和良好的电荷传输能力等特性集合于 CoNi2S4/Ni 上使得CoNi2S4/Ni 具有优异的催化氢析出和催化氧析出反应性能.  相似文献   

16.
胡佳妮  张晓峰  肖娟  李如春  王毅  宋树芹 《催化学报》2021,42(12):2275-2286
电解水制氢因具有清洁高效的优点而被认为是大规模生产氢能最有希望的技术之一.然而,电解水半反应之一的析氧反应(OER)需经历复杂且动力学缓慢的4电子转移过程.加之热力学上的阻碍,OER实际需要的电位远大于1.23 V的理论值,导致其能耗高,限制了电解水的效率和商业化应用.因此,亟待开发高效的OER电催化剂.管状结构具有较高的比表面积、充分暴露的活性位点和丰富的短路径扩散通道,是一种理想的电催化结构.同时,Co3O4基材料因其制备容易、成本低和OER电催化学活性较高等特点,成为近年来电催化材料的研究热点.此外,非金属元素P的掺杂条件温和,并且可以有效改变过渡金属电子结构.因此,本文通过合理设计管状的Co3O4基电催化剂并进行P掺杂,尝试将形貌调控和元素改性的优势发挥到最大.为了解析影响生成管状结构的因素,本文通过控制变量法系统地研究了管状Ni/Co3O4的制备条件,包括阳离子种类和含量、添加剂种类和含量、阴离子种类等对催化剂形貌和性能的影响.表征结果表明,初始的乙酸钴镍氢氧化物棱柱对反应环境较为敏感,从而成为直接影响最终微米管状结构的关键因素.此外,对Ni/Co3O4微米管进行适量的P掺杂,能提高材料的电子传输性能和优化材料的电子结构;而且P的掺杂直接提高了样品中的M3+/M2+比例(M代表Co和Ni),而M3+是M基电催化材料的活性位点,这进一步增加了OER的活性位点进而提高其催化活性.总之,通过结构和成分的优化,得到了OER催化性能显著提高的微米管状P-Ni/Co3O4,其性能甚至超过了商业化RuO2电催化剂.  相似文献   

17.
通过Al3+偶联制备了多层EosinY敏化的TiO2催化剂,其光催化制氢性能优于Fe3+偶联的催化剂.在水体系、甲醇-水体系中,以三乙醇胺(TEOA)作电子给体,采用原位载Pt,考察了催化剂在可见光(λ420nm)下的制氢活性与稳定性.结果表明,含水0.5%(体积分数)的体系、载铂量为1.0%时,显示了较高的活性和良好的稳定性,20h的平均量子效率为20.5%,转换数为220.较高的活性和稳定性初步归结于Al3+水解趋势较Fe3+小,且催化剂在甲醇中比在水中更稳定,进一步的研究正在进行中.  相似文献   

18.
This paper presents an experimental kinetic study of the polymerization of propylene in liquid monomer with a high activity catalyst. The influences of the concentration of hydrogen and the molar ratios of the catalyst, cocatalyst, and electron donor on the activation period, the maximum activity, the yield, and the decay behavior have been investigated at a temperature of 42°C using a relatively simple kinetic model. On the basis of the experimental data, the reaction rate has been modeled as a function of the hydrogen concentration, the molar ratio of cocatalyst and titanium, and the molar ratio of the electron donor and the cocatalyst. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 219–232, 1999  相似文献   

19.
The Platinum(Pt)-based catalysts exhibit excellent catalytic performance for the hydrogen evolution reaction(HER) while suffering from poor stability due to the weak interaction between the carbon support and Pt.Herein,a molybdenum-doped titanium dioxide(Ti_(0.9)Mo_(0.1)O_2) supported low-Pt electrocatalyst with stronger interaction between catalyst and support is applied to tune the electrocatalytic performance of Pt.The Ti_(0.9)Mo_(0.1)O_2 support can not only tolerate the corrosion environment in the catalytic system,but also generate strong metal-support inte raction(SMSI) between the oxide and catalyst.A facile solvothermal method is used to prepare Ti_(0.9)Mo_(0.1)O_2 as support to anchor Pt nanoparticles.The 5% Pt supported on Ti_(0.9)Mo_(0.1)O_2 catalyst exhibits 4.4-fold mass activity(MA) at an overpotential of 50 mV and higher stability than 20% Pt/C with only 1/4 Pt loading.The SMSI between the Ti_(0.9)Mo_(0.1)O_2 and Pt prevents the Pt aggregation to achieve excellent stability,and hydrogen spillover effect in the interface between Pt and support benefits the hydrogen production process.This work presents a novel sight for the fabrication and design of oxide supported catalysts in various catalytic system by reasonably employing support effect.  相似文献   

20.
Composite Ni–P/nano‐TiO2 coatings were prepared by simultaneous electroless deposition of Ni–P and nano‐TiO2 on a low carbon steel substrate. The deposition was carried out from stirred solutions containing suspended nano‐TiO2 particles. The Ni–P and Ni–P/nano‐TiO2 coatings before and after heat treatment were characterized by X‐ray diffraction, scanning electron microscopy and energy dispersive X‐ray spectroscopy. The micro‐structural morphologies of the coatings significantly varied with the nano‐TiO2 content. The corrosion resistance of as‐plated and heat‐treated Ni–P and Ni–P/nano‐TiO2 coatings was investigated by anodic polarization, Tafel plots and electrochemical impedance spectroscopic (EIS) studies in 3.5% NaCl solution. Ni–P/nano‐TiO2 coating exhibited superior corrosion resistance over Ni–P coating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号