首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermoresponsive block copolymers comprising long, hydrophilic, nonionic poly(methoxy diethylene glycol acrylate) (PMDEGA) blocks and short hydrophobic polystyrene (PS) blocks are investigated in aqueous solution. Various architectures, namely diblock, triblock, and starblock copolymers are studied as well as a PMDEGA homopolymer as reference, over a wide concentration range. For specific characterization methods, polymers were labeled, either by partial deuteration (for neutron scattering studies) or by fluorophores. Using fluorescence correlation spectroscopy, critical micellization concentrations are identified and the hydrodynamic radii of the micelles, r h mic , are determined. Using dynamic light scattering, the behavior of r h mic in dependence on temperature and the cloud points are measured. Small-angle neutron scattering enabled the detailed structural investigation of the micelles and their aggregates below and above the cloud point. Viscosity measurements are carried out to determine the activation energies in dependence on the molecular architecture. Differential scanning calorimetry at high polymer concentration reveals the glass transition of the polymers, the fraction of uncrystallized water and effects of the phase transition at the cloud point. Dielectric relaxation spectroscopy shows that the polarization changes reversibly at the cloud point, which reflects the formation of large aggregates upon heating through the cloud point and their redissolution upon cooling.  相似文献   

2.
Water-soluble, amphiphilic diblock copolymers were synthesized by reversible addition fragmentation chain transfer polymerization. They consist of poly(butyl acrylate) as hydrophobic block with a low glass transition temperature and three different nonionic water-soluble blocks, namely, the classical hydrophilic block poly(dimethylacrylamide), the strongly hydrophilic poly(acryloyloxyethyl methylsulfoxide), and the thermally sensitive poly(N-acryloylpyrrolidine). Aqueous micellar solutions of the block copolymers were prepared and characterized by static and dynamic light scattering analysis (DLS and SLS). No critical micelle concentration could be detected. The micellization was thermodynamically favored, although kinetically slow, exhibiting a marked dependence on the preparation conditions. The polymers formed micelles with a hydrodynamic diameter from 20 to 100 nm, which were stable upon dilution. The micellar size was correlated with the composition of the block copolymers and their overall molar mass. The micelles formed with the two most hydrophilic blocks were particularly stable upon temperature cycles, whereas the thermally sensitive poly(N-acryloylpyrrolidine) block showed a temperature-induced precipitation. According to combined SLS and DLS analysis, the micelles exhibited an elongated shape such as rods or worms. It should be noted that the block copolymers with the most hydrophilic poly(sulfoxide) block formed inverse micelles in certain organic solvents.  相似文献   

3.
The interaction of amphiphilic block copolymers comprising an anionic block (polyacrylate or polymethacrylate) and a hydrophobic block (polystyrene, poly(butyl acrylate) or polyisobutylene) with lightly crosslinked poly(N,N-diallyl-N,N-dimethylammonium chloride) is studied for the first time. It is shown that the cationic hydrogel can sorb anionic amphiphilic block copolymers via electrostatic interaction with the corona of block copolymer micelles. The rate of sorption of block copolymer polyelectrolytes is significantly lower than the rate of sorption of linear polyions and is controlled by the lengths of the hydrophilic and hydrophobic blocks and the flexibility of the latter blocks. The sorption of amphiphilic block copolymers is accompanied by their self-assembly in the polycomplex gel and formation of a continuous hydrophobic layer impermeable to water and the low-molecular-mass salt dissolved in it.  相似文献   

4.
Nonionic water-soluble poly(acrylamide)s and poly(acrylate)s were synthesized by RAFT and ATRP methods. Similar to the synthesized poly(N-isopropylacrylamide) and poly(N-acryloylpyrrolidine), aqueous solutions of statistical acrylate copolymers bearing two different oligo(ethylene oxide) side chains showed a sharp clouding transition upon heating beyond characteristic temperatures. The temperature of the cloud point can be easily fine tuned by the copolymer composition. As for poly(N-isopropylacrylamide) and poly(N-acryloylpyrrolidine), the cloud-point temperatures of these statistical copolymers are rather insensitive to changes in the molar mass or the NaCl content of the solutions. Also, ternary triblock copolymers containing one permanently hydrophilic block and two different thermoresponsive blocks were synthesized, varying the block sequence systematically. Their aggregation in aqueous solution was followed by turbidimetry and dynamic light scattering. Depending on the heating process and the triblock sequence, micellar aggregates of 40 to 600 nm size were found. The thermally induced aggregation behavior depends sensitively on the block sequence but is also subject to major kinetic effects. For certain block sequences, a thermally induced two-step association is observed when heating beyond the first and second cloud points of the thermoresponsive blocks. However, the thermal-transition temperatures of the block polymers can differ from the thermal-transition temperatures of the individual homopolymers. This may be caused by end-group effects but also by mutual interactions of the different blocks in solution, as physical mixtures of the homopolymers exhibit deviations from a purely additive thermal behavior.  相似文献   

5.
A series of triple-thermoresponsive triblock copolymers from poly(N-n-propylacrylamide) (PNPAM, A), poly(methoxydiethylene glycol acrylate) (PMDEGA, B), and poly(N-ethylacrylamide) (PNEAM, C) was synthesized by sequential reversible addition-fragmentation chain transfer polymerizations. Polymers of differing block sequences, ABC, BAC, and ACB, with increasing phase transition temperatures in the order A < B < C were prepared. Their aggregation behavior in dilute aqueous solution was investigated using dynamic light scattering, turbidimetry, and NMR spectroscopy. The self-organization of such polymers was found to dependent strongly on the block sequence. While polymers with a terminal low-LCST (lower critical solution temperature) block undergo aggregation above the first phase transition temperature at 20-25 °C, triblock copolymers with the low-LCST block in the middle show aggregation only above the second phase transition. The collapse of the middle block is not sufficient to induce aggregation but produces instead stable, unimolecular micelles with a collapsed middle block, as supported by NMR and fluorescence probe data. Continued heating of all copolymers led to two additional thermal transitions at 40-55 and 70-80 °C, which could be correlated to the phase transitions of the B and C blocks, respectively. All polymers show a high tendency for cluster formation, once aggregation is induced. The carrier abilities of the triple responsive triblock copolymers for hydrophobic agents were probed with the solvatochromic fluorescence dye Nile Red. With passing through the first thermal transition, the block copolymers are capable of solubilizing Nile Red. In the case of block copolymers with sequences ABC or ACB, which bear the low-LCST block at one terminus, notable amounts of dye are solubilized already at this stage. In contrast, the hydrophobic probe is much less efficiently incorporated by the BAC triblock copolymer, which forms unimolecular micelles. Only after the collapse of the B block, when reaching the second phase transition at about 45 °C, does aggregation occur and solubilization becomes efficient. In the case of ABC and ACB polymers, the hydrophobic probe seems to partition between the originally collapsed A chains and the additional hydrophobic chains formed after the collapse of the less hydrophobic B block.  相似文献   

6.
Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks.  相似文献   

7.
Well-defined amphiphilic seven-arm star triblock copolymers containing hydrophobic crystalline poly(ε-caprolactone)(PCL) blocks, hydrophobic non-crystalline poly(tert-butyl acrylate)(PtBA) blocks and hydrophilic poly(ethylene glycol)(PEG) blocks were precisely synthesized by a combination of ring-opening polymerization(ROP), atom transfer radical polymerization(ATRP) and “click” reaction. Such star copolymers could self-assemble into “core-shell-corona” micelles and “multi-layer” vesicles depending on the fraction of each block. Meanwhile, the selective hydrolysis of middle PtBA blocks into the poly(acrylic acid)(PAA) blocks allowed the star block copolymers to further change their morphologies of aqueous aggregates in response to pH values.  相似文献   

8.
The aim of this study was to investigate the effect of the asymmetry of the triblock copolymers on their thermoresponsive self‐assembly behavior. To this end, nine ABA‐type triblock copolymers with n‐butyl methacrylate and 2‐(dimethylamino)ethyl methacrylate (DMAEMA) consisting of the A and the B blocks, respectively, were synthesized. Polymers of three different DMAEMA contents (50, 60, and 70 wt %) were synthesized while varying the length ratio of the two hydrophobic A blocks. Specifically, one symmetric ABA triblock copolymer and two asymmetric ABA′ triblock copolymers with the length of the second A block to be twice or four times bigger than the length of the first A block (AB2A and AB4A triblock copolymer) were synthesized for each DMAEMA composition. Three statistical copolymers were also synthesized for comparison. The thermoresponsive behavior of the copolymers was studied and it was found that the cloud point and rheological properties of the polymers were strongly affected by the architecture (statistical vs. block) and less strongly by the DMAEMA composition and the asymmetry of the polymers. Nevertheless, interestingly the asymmetry of the ABA triblock copolymers did influence the thermoresponsive behavior with the more symmetric polymers presenting a sol–gel transition at lower temperatures. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2850–2859.  相似文献   

9.
pH‐sensitive polymers can be defined as polyelectrolytes that include in their structure weak acidic or basic groups that either accept or release protons in response to a change in the environmental pH. This work summarizes the design, synthesis, and potential applications of pH‐responsive fluorescent copolymers in the biomedical field. This was achieved using atom transfer radical polymerization (ATRP) of tert‐butyl acrylate using a CuBr/N,N,N′,N″N″‐pentamethyldiethylenetriamine catalyst system in conjunction with an alkyl bromide as the initiator. Well‐defined macroinitiators based on poly(tert‐butyl acrylate) with narrow molecular weight distributions were obtained by the addition of an appropriate solvent system in order to create a homogeneous catalytic system. The addition of n‐butyl acrylate as a second building block in order to create well‐defined poly(tert‐butyl acrylate)‐b‐poly(n‐butyl acrylate) block copolymers (PtBA‐b‐PnBA) followed by chemical modification of the block copolymers and functionalization with an appropriate fluorescent compound are the basis for the preparation of well‐defined fluorescent pH‐sensitive micelles. Thus, prepared water soluble nanosized pH‐sensitive micelles consisting of hydrophobic poly(n‐butyl acrylate) core and hydrophilic polyacrylic acid shell decorated with an appropriate fluorescent compound determined their potential applications of these systems in the field of biomedicine as biosensors, controlled drug delivery systems, and so on. In this respect, the cell viability and internalization of the polymer micelles were studied.  相似文献   

10.
A series of symmetrical, thermo-responsive triblock copolymers was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization, and studied in aqueous solution with respect to their ability to form hydrogels. Triblock copolymers were composed of two identical, permanently hydrophobic outer blocks, made of low molar mass polystyrene, and of a hydrophilic inner block of variable length, consisting of poly(methoxy diethylene glycol acrylate) PMDEGA. The polymers exhibited a LCST-type phase transition in the range of 20-40 °C, which markedly depended on molar mass and concentration. Accordingly, the triblock copolymers behaved as amphiphiles at low temperatures, but became water-insoluble at high temperatures. The temperature dependent self-assembly of the amphiphilic block copolymers in aqueous solution was studied by turbidimetry and rheology at concentrations up to 30 wt %, to elucidate the impact of the inner thermoresponsive block on the gel properties. Additionally, small-angle X-ray scattering (SAXS) was performed to access the structural changes in the gel with temperature. For all polymers a gel phase was obtained at low temperatures, which underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurred. With increasing length of the PMDEGA inner block, the gel-sol transition shifts to markedly lower concentrations, as well as to higher transition temperatures. For the longest PMDEGA block studied (DP(n) about 450), gels had already formed at 3.5 wt % at low temperatures. The gel-sol transition of the hydrogels and the LCST-type phase transition of the hydrophilic inner block were found to be independent of each other.  相似文献   

11.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
We have studied different thermo-responsive poly(2-oxazoline)s with iso-propyl (iPrOx) and n-propyl (nPrOx) pendant groups in aqueous solutions, where they exhibit lower critical solution temperature behavior. This paper focuses on the effect of the degree of polymerization, n, the concentration, c, in the dilute regime, and the presence of hydrophobic moieties. The cloud points were investigated as a function of the degree of polymerization, n, and of the polymer concentration, c. The aggregation behavior near the cloud point was studied by temperature-resolved small-angle neutron scattering and fluorescence correlation spectroscopy, i.e., a combination of ensemble and single molecule methods. We found that at the cloud points, large aggregates are formed and that the cloud points depend strongly on both, n and c. Diblock copolymers from iPrOx and nPrOx form large aggregates already at the cloud point of PnPrOx, and, unexpectedly, no micelles are observed between the cloud points of the two blocks. Gradient copolymers from iPrOx and n-nonyl-2-oxazoline (NOx) display a complex aggregation behavior resulting from the interplay between intra- and intermolecular association mediated by the hydrophobic NOx blocks. Above the cloud point, an intermediate temperature regime with a width of a few Kelvin was found with small but stable polymer aggregates. Only at higher temperatures, larger aggregates are found in significant number.  相似文献   

13.
We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 °C and 1 M.  相似文献   

14.
The solubility behavior of well‐defined poly(methyl acrylate) homopolymers as well as polystyrene‐block‐poly (methyl acrylate) block copolymers is discussed in this contribution. A solubility screening in ethanol–water solvent mixtures was performed in a high‐throughput manner using parallel turbidimetry revealing upper critical solution temperature behavior for poly(methyl acrylate). Moreover, the self‐assembly behavior of the block copolymers into micellar structures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and cryo‐TEM revealing upper critical solution temperature switchability of the micelles, which was evaluated by DLS at different temperatures. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Block copolymers comprising thermosensitive poly(N-isopropylacrylamide) (PNIPAM) and hydrophobic poly(n-butyl acrylate) (PBA) blocks, were synthesized using the reversible addition-fragmentation chain transfer polymerization (RAFT), their thermosensitive behavior was studied by ultraviolet spectrophotometer (UV) and dynamic light scattering (DLS). The lower critical solution temperature (LCST) was strongly correlated to the hydrophobic/hydrophilic ratio of the copolymers. Their micellization and self-assembly behavior in dilute aqueous solution were studied by surface tension (SFT), DLS and TEM. The resulting block copolymers reversibly formed or deformed micellar assemblies during their LCSTs. The critical micelle concentration (CMC) was controlled by the composition of PBA and PNIPAM, indicating the successful formation of the block copolymers.  相似文献   

16.
A series of ABA amphiphilic triblock copolymers possessing polystyrene (PS) central hydrophobic blocks, one group with “short” PS blocks (DP = 54–86) and one with “long” PS blocks (DP = 183–204) were synthesized by atom transfer radical polymerization. The outer hydrophilic blocks were various lengths of poly(oligoethylene glycol methyl ether) methacrylate, a comb‐like polymer. The critical aggregation concentrations were recorded for certain block copolymer samples and were found to be in the range circa 10−9 mol L−1 for short PS blocks and circa 10−12 mol L−1 for long PS blocks. Dilute aqueous solutions were analyzed by transmission electron microscopy (TEM) and demonstrated that the short PS block copolymers formed spherical micelles and the long PS block copolymers formed predominantly spherical micelles with smaller proportions of cylindrical and Y‐branched cylindrical micelles. Dynamic light scattering analysis results agreed with the TEM observations demonstrating variations in micelle size with PS and POEGMA chain length: the hydrodynamic diameters (DH) of the shorter PS block copolymer micelles increased with increasing POEGMA block lengths while maintaining similar PS micellar core diameters (DC); in contrast the values of DH and DC for the longer PS block copolymer micelles decreased. Surface‐pressure isotherms were recorded for two of the samples and these indicated close packing of a short PS block copolymer at the air–water interface. The aggregate solutions were demonstrated to be stable over a 38‐day period with no change in aggregate size or noticeable precipitation. The cloud point temperatures of certain block copolymer aggregate solutions were measured and found to be in the range 76–93 °C; significantly these were ∼11 °C higher in temperature than those of POEGMA homopolymer samples with similar chain lengths. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7739–7756, 2008  相似文献   

17.
In this study, a series of amphiphilic polymers with poly(ascorbyl acrylate) (PAAA) as hydrophilic blocks and polyacrylate bearing side-chain cholesteryl mesogens (PCholDEGA) as hydrophobic blocks were prepared using a combination of four-step reactions consisting of two consecutive reversible addition-fragmentation chain transfer (RAFT), desulfurization, and hydrogenolysis under normal pressure. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) as well as wide-angle X-ray diffraction (WAXD) studies showed that the copolymers with PCholDEGA as major block had relatively high stability and clear isotropization temperature (T(i)). Small-angle X-ray diffraction (SAXD) investigation exhibited that the copolymers had bilayer smectic A structure. Their self-assembly behavior was monitored by turbidity change using UV-vis spectrometer, and the morphology and size of the nanoparticles via self-assembly were detected using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The entrapment efficiency and loading capacity of these amphiphilic copolymers were investigated using nile red and drug molecule Ibuprofen. These polymeric micelles with PAAA shell extending into the aqueous solution and strong hydrophobic PCholDEGA core have potential abilities to act as promising nanovehicles with high loading and targeting delivery.  相似文献   

18.
Four-arm star block polymers consisting of hydrophobic poly(?-caprolactone) (PCL) block and hydrophilic poly(2-(diethylamino) ethyl methacrylate)) (PDEAEMA) block were successfully synthesized by ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Chain lengths of PDEAEMA segments were varied to obtain a series of star copolymers with different hydrophilic/hydrophobic ratio, which were desired for self-assembly study. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) were used to study their self-assembly behavior. In the PBS solution with different pH value, the star polymers formed micelles or nanoparticles. Furthermore, the morphologies of the micelles were also pH-dependent. Critical micelle concentrations of star copolymers changed from 5.0 to 17.5 mg/L with the increase of hydrophilic block length or the pH decrease. Moreover, a steady increase was found on the micelles diameters when the pH decreased from 7.0 to 3.0. The low CMC value and slight changes on micelle diameter indicated that the micelle remained stable under the changing external stimulus.  相似文献   

19.
Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) blocks were sequentially grown via anionic polymerization to form four block copolymer arms on a cholic acid (CA) core, yielding star block copolymers (CA(AGE(8)-b-EG(n))(4)) with low polydispersities (ca. 1.05). The introduction of PAGE segments into CA(PEG)(4) significantly reduced their crystallinity. The polymers can aggregate in water at room temperature above their critical aggregation concentration. The copolymers are thermoresponsive; their behavior in aqueous solutions was studied by the use of UV-visible spectroscopy, dynamic light scattering, and transmission electron microscopy. Their cloud points vary from 13 to 55 °C with increasing length of the PEG segments. Double thermoresponsive behavior was observed with short PEG segments because of a two-step transition process: small micelles are formed upon heating and then further aggregate into micellar clusters through the association of PEG chains.  相似文献   

20.
A series of poly(styrene‐blocktert‐butyl acrylate) heteroatom star block copolymers having various block lengths were prepared by atom transfer radical polymerization (ATRP), using an “as synthesized” cynurate modified trifunctional initiator. The structure of the star polymers was confirmed by the characterization of the individual arms resulting from hydrolysis. Amphiphilic poly(styrene‐block‐acrylic acid) star copolymers were further synthesized by hydrolyzing PtBA blocks using anhydrous trifluoroacetic acid. The characterization data are reported from analyses using gel permeation chromatography, infrared, 1H and 13C NMR spectroscopies. The stable micelle solution was prepared by dialyzing the solution of these polymers in N,N‐dimethylformamide against deionized water. The temperature‐induced associating behavior of these amphiphilic star polymers were studied using dynamic laser light scattering spectroscopy. The hydrodynamic diameter of both micelles and unassociated chains were obtained in the same solution using light scattering cumulant's calculation method. The homogeneity and the size distribution of the micelle population in the solution were determined using centrifuge/sedimentation particle size distribution analyzer. Field emission scanning electron microscope was used to visualize the size of the micelles formed and the micellar aggregates. The influence of the temperature on the viscosity of the micelle solution was studied using an Ubbelohde viscometer. Thermodynamics of micellization of these block copolymers were also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6367–6378, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号