首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present direct observation of the velocity-selective optical pumping of the Rb ground state hyperfine levels induced by 5S(1/2) --> 5P(1/2) femtosecond pulse-train excitation. A modified direct frequency comb spectroscopy based on the fixed frequency comb and a weak cw scanning probe laser was developed. The femtosecond pulse-train excitation of a Doppler-broadened Rb four-level atomic vapor is investigated theoretically in the context of the density matrix formalism and the results are compared with the experiment.  相似文献   

2.
吴学健  尉昊赟  朱敏昊  张继涛  李岩 《物理学报》2012,61(18):180601-180601
利用光纤飞秒光频梳和外腔可调谐半导体激光器, 建立了一套双频He-Ne激光器频率测量系统. 选用铷钟作为系统的频率基准, 通过将外腔半导体激光锁定至光频梳使得其频率溯源至铷钟, 再利用外腔可调谐半导体激光与双频He-Ne激光器输出的正交偏振激光拍频, 同时测量两路正交偏振激光频率. 将可调谐半导体激光器锁定至光频梳第1894449个梳齿, 其绝对频率为473612190000.0±2.7 kHz, 相对不确定度为5.7×10-12. 对商品双频He-Ne激光器进行频率测量实验, 双频He-Ne激光器水平方向偏振激光频率均值为473612229934 kHz, 竖直方向偏振激光频率均值为473612232111 kHz, 平均时间为1024 s的相对Allan标准差为5.2×10-11, 频差均值为2.177 MHz, 标准偏差为2 kHz.  相似文献   

3.
Laser diodes, optically narrowed using the technique of resonant optical feedback, have been frequency stabilised to hyperfine transitions of the two Rb D lines at 780 nm and 795 nm. The best frequency stability of the beat between two similar lasers was 1.5 kHz (4 parts in 1012 of the optical frequency) observed for an averaging time of 10 s. A frequency reproducibility of 44 kHz (one standard deviation) was observed on strong isolated hyperfine components, and possible causes of frequency shift were investigated. Values for the Rb hyperfine intervals were obtained, leading to an improved determination of the excited state hyperfine constants of 85Rb and 87Rb, and the isotope shift. The absolute frequencies of the hyperfine transitions of the two D lines were determined interferometrically by comparison with an 127I2-stabilised He-Ne laser at 633 nm. Measurements were made on component c at 795 nm and the d/f level crossing at 780 nm. The frequencies were found to be 377106271.6 MHz and 384227981.9 MHz respectively under the chosen conditions, with an uncertainty of ±0.4 MHz, limited by knowledge of the reference frequency. These results represent the most accurate and complete characterisation to date of laser diodes stabilised to Doppler-free Rb spectra.  相似文献   

4.
We present direct observation of the velocity-selective optical pumping of the Cs ground state hyperfine levels induced by the femtosecond (fs) laser oscillator centered at either D2 (6 2S1/2↦6 2P3/2, 852 nm) or D1 (6 P1/2, 894 nm) cesium line. We utilized previously developed modified direct frequency comb spectroscopy (DFCS) which uses a fixed frequency comb for the excitation and a weak cw scanning probe laser centered at the 133Cs 6 2S1/2↦6 2P3/2 transition (D2 line) for ground levels population monitoring. The frequency comb excitation changes the usual Doppler absorption profile into a specific periodic, comblike structure. The mechanism of the velocity selective population transfer between the Cs ground state hyperfine levels induced by fs pulse train excitation is verified in a theoretical treatment of the multilevel atomic system subjected to a pulse train resonant field interaction.  相似文献   

5.
We present absolute optical frequency measurements of the 5s2 S 1/2–6p2 P 1/2 hyperfine resolved transitions in both 85Rb and 87Rb near 422 nm. The frequency of each transition was measured by stabilizing a narrow-linewidth extended cavity diode laser to the transition under study and by measuring that frequency with a femtosecond laser frequency comb. A frequency-doubled 844 nm laser was used as a frequency link to connect the 422 nm probe laser to the near infrared part of the comb. The resulting uncertainties of <70 kHz in the Rb transition frequencies represent a four-order of magnitude improvement over previously published results. The frequencies reported in this paper are one of the most accurate series of measurements made in the violet region of the spectrum. PACS 06.30.Ft; 33.20.Kf; 43.62.Fi  相似文献   

6.
The effects of a strong control or pump laser, counter propagating or copropagating with the probe beam, on the probe absorption spectra of 85Rb and 87Rb-D2 transitions have been investigated inside a room temperature Rb vapour cell. In both cases a set of strong velocity selective resonance dips are observed at different velocities. Their movements across the Doppler broadened probe absorption profile have been studied for different lock frequencies of the control laser. These spectra are modified by optical pumping effects due to the presence of another hyperfine component of the ground state. A repumping laser, from the dark hyperfine component of the ground level transfers almost 75% of the atoms from the dark state to the pump probe cycle hence reducing the optical pumping effect. A numerical simulation is done to explain the observed spectra. The effect of a control laser on the Lamb dip spectrum of the probe laser has also been investigated. The control beam is used to improve the strength of a weak hyperfine dip on the Doppler broadened probe spectrum. The strength of the hyperfine dip increases by a factor of 3.2 in presence of the control laser. The observed dips show that pump-probe spectroscopy can be used as velocity selectors of atoms.  相似文献   

7.
基于飞秒光频梳的压电陶瓷闭环位移控制系统   总被引:1,自引:0,他引:1       下载免费PDF全文
朱敏昊  吴学健  尉昊赟  张丽琼  张继涛  李岩 《物理学报》2013,62(7):70702-070702
利用飞秒光频梳、外腔可调谐半导体激光器和法布里-珀罗干涉仪建立了一套压电陶瓷亚纳米级闭环位移控制系统. 将可调谐半导体激光器锁定至光频梳, 通过精确调谐光频梳的重复频率, 实现了半导体激光器在其工作频率范围内的精密调谐. 利用Pound-Drever-Hall锁定技术将带有压电陶瓷的法布里-珀罗腔锁定至半导体激光器, 进而通过频率发生系统控制压电陶瓷产生亚纳米级分辨率的位移. 实验研究发现锁定至光频梳后可调谐半导体激光器1 s的Allan标准偏差为1.68×10-12, 将其在30.9496 GHz范围内进行连续闭环调谐, 可获得压电陶瓷的位移行程约为4.8 μm; 以3.75 Hz的步长扫描光频梳的重复频率, 实现了压电陶瓷的450 pm闭环位移分辨率并测定了压电陶瓷的磁滞特性曲线. 该系统不存在非线性测量误差, 且激光频率及压电陶瓷位移均溯源至铷钟频率源. 关键词: 光频梳 压电陶瓷 法布里-珀罗腔 可调谐半导体激光器  相似文献   

8.
方占军  王强  王民明  孟飞  林百科  李天初 《物理学报》2007,56(10):5684-5690
报道了中国计量科学研究院研制的基于掺钛蓝宝石(Ti:Sapphire)锁模飞秒脉冲激光器的飞秒光学频率梳装置,并利用此装置测量了碘稳频532nm(127I2R(56)32-10) Nd∶YAG固体激光器的频率,结果为 563260223512991±20Hz,相对不确定度为3.6×10-14.这一数值是直接溯源到铯原子微波频率基准的光学频率测量结果.  相似文献   

9.
This paper reports that two identical external-cavity-diode-laser (ECDL) based spectrometers are constructed at 634 nm referencing on the hyperfine B-X transition R(80)8-4 of 127I2. The lasers are stabilized on the Doppler-free absorption signals using the third-harmonic detection technique. The instability of the stabilized laser is measured to be 2.8×10-12 (after 1000 s) by counting the beat note between the two lasers. The absolute optical frequency of the transition is, for the first time, determined to be 472851936189.5 kHz by using an optical frequency comb referenced on the microwave caesium atomic clock. The uncertainty of the measurement is less than 4.9 kHz.  相似文献   

10.
杨丰  刘淑琴  董太乾 《物理学报》1984,33(1):116-120
本文对用85Rb灯不经滤光泡直接对87Rb吸收泡的光抽运作了观测,得到了比传统的用87Rb灯经85Rb滤光泡对87Rb吸收泡进行光抽运更强的基态0—0跃迁共振讯号。并在一定温度下观察到负的共振讯号。到目前为止,还不能对这种负的共振讯号作出解释。同时还测量了共振线宽和光频移。对在87Rb原子频标中应用的可能性作了评述。 关键词:  相似文献   

11.
T Shioda  T Yamazaki 《Optics letters》2012,37(17):3642-3644
We propose an ultrafast optical arbitrary waveform synthesizing/analyzing technique demonstrated with 2 Tbit/s waveforms. An ultrafast waveform was generated by manipulating the amplitude and phase of a 400?GHz optical frequency comb using a newly developed colorless optical synthesizer. The 400?GHz optical frequency comb was generated from a 25?GHz optical frequency comb using a colorless arrayed waveguide grating. This waveform was then analyzed on the frequency axis using a custom heterodyne-detection technique based on the dual-heterodyne mixing method. The phase and amplitude spectra can be observed in parallel using another optical frequency comb as a reference combined with an arrayed waveguide grating. This optical system, named the ultrafast optical frequency comb synthesizer and analyzer, can synthesize and analyze an arbitrary waveform in the THz frequency region.  相似文献   

12.
Ye J  Ma LS  Daly T  Hall JL 《Optics letters》1997,22(5):301-303
Using a 10.5-GHz resonant electro-optic modulator placed inside a resonant optical cavity, we generated an optical frequency comb with a span wider than 3 THz. The optical resonator consists of three mirrors, with the output coupler being a thin Fabry-Perot cavity with a free spectral range of 2 THz and a finesse of 400. Tuning this filter cavity onto resonance with a particular high-order sideband permits efficient output coupling of the desired sideband power from the comb generator, while keeping all other sidebands inside for continued comb generation. This spectrally pure output light was then heterodyne detected by another laser with a frequency offset of the order of 1 THz.  相似文献   

13.
We report on the absolute frequency measurement of an extended-cavity diode laser stabilized against a Doppler-free vibration?Crotation transition of the H2 18O isotopologue near 1.384???m. Absolute determination is performed by comparing the water-stabilized laser frequency with respect to a GPS-disciplined Rb microwave standard by means of a self-referenced fiber-based optical frequency comb. The line center frequency of the 22,1??22,0 transition of the H2 18O ??1+??3 combination band is found to be 216?519?045?955(13)?kHz.  相似文献   

14.
Magnetic resonance frequency shifts caused by spin-exchange collisions between 87Rb and 133Cs atoms are calculated, and temperature dependences of magnetic resonance frequency shifts are drawn for two hyperfine states (F = 1, 2) of 87Rb atoms. The obtained dependences are compared with experimental data.  相似文献   

15.
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~?10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams. These results demonstrate clearly that the wide bandwidth and ultrasensitive nature of the femtosecond enhancement cavity enables powerful real-time detection and identification of many molecular species in a massively parallel fashion.  相似文献   

16.
We have developed a practical and precise frequency measurement system at 1.5 μm telecommunication band. An electro-optic-modulator based optical frequency comb is phase-locked to a dither-free acetylene-stabilized laser to realize an optical frequency comb with frequency uncertainty of 10 kHz (5 × 10−11) and the linewidth of 15 kHz. The present frequency comb can be also used as an optical frequency reference grid defined by ITU-T (International Telecommunication Union, Telecommunication Standardization Sector). Using the present frequency measurement system, we have demonstrated the first optical frequency measurement of 12C16O overtone absorption lines around 1.56 μm with the uncertainty of lower than 900 kHz.  相似文献   

17.
Chui HC  Ko MS  Liu YW  Shy JT  Peng JL  Ahn H 《Optics letters》2005,30(8):842-844
The absolute frequencies of rubidium 5S-7S two-photon transitions at 760 nm are measured to an accuracy of 20 kHz with an optical frequency comb based on a mode-locked femtosecond Ti:sapphire laser. The rubidium 5S-7S two-photon transitions are potential candidates for frequency standards and serve as important optical frequency standards for telecommunication applications. The accuracy of the hyperfine constant of the 7S1/2 state is improved by a factor of 5 in comparison with previous results.  相似文献   

18.
A frequency comb is generated with a chromium-doped forsterite femtosecond laser, spectrally broadened in a dispersion-shifted highly nonlinear fiber, and stabilized. The resultant evenly spaced comb of frequencies ranges from 1.1 to beyond 1.8 microm. The frequency comb was referenced simultaneously to the National Institute of Standards and Technology's optical frequency standard based on neutral calcium and to a hydrogen maser that is calibrated by a cesium atomic fountain clock. With this comb we measured two frequency references in the telecommunications band: one half of the frequency of the d/f crossover transition in 87Rb at 780 nm, and the methane v2 + 2v3 R(8) line at 1315 nm.  相似文献   

19.
We have developed a ring-cavity resonator that can be used to measure the absolute frequencies of optical transitions with an uncertainty below 40 kHz. The length of the resonator is calibrated against a reference laser locked to the D2 line of 87Rb, the frequency of which is known with 6 kHz accuracy. We demonstrate the power of this technique by measuring the absolute frequencies of various hyperfine transitions in the D1 line of 133Cs. Our results agree with earlier measurements using the frequency-comb technique, and have similar accuracy. Measurement of the D1-line frequency could lead to a more precise determination of the fine-structure constant. We also report a precise value of A=291.918(8) MHz for the hyperfine constant in the 6P1/2 state.  相似文献   

20.
We report the generation of an octave-spanning optical frequency comb in a continuous wave laser pumped microresonator. The generated comb spectrum covers the wavelength range from 990 to 2170 nm without relying on additional external broadening. Continuous tunability of the generated frequency comb over more than an entire free spectral range is demonstrated. Moreover, the linewidth of individual optical comb components and its relation to the pump laser phase noise is studied. The ability to derive octave-spanning spectra from microresonator comb generators represents a key step towards f-2f self-referencing of microresonator-based optical frequency combs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号