首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ambient pressure on the dynamics of laser-induced bubbles was investigated by a fiber-optic diagnostic technique based on probe beam deflection (PBD). The experimental criterion for judging the maximum bubble radius is modified to the average value of the detecting distances at which the characteristic waveform signals appear. The ambient pressure affects the maximum radius and collapse of bubble strongly. The experimental results indicate that the maximum bubble radius and the collapse time both decrease nonlinearly while the ambient pressure increases linearly, and the decreasing velocities of them are smaller at a larger ambient pressure. The predicted value of collapse time has a good agreement with experiment at larger ambient pressure.  相似文献   

2.
The oscillation of a laser-generated single cavitation bubble near a solid boundary is investigated by a fiber-optic diagnostic technique based on optical beam deflection (OBD). The maximum bubble radii and collapse time for each oscillation cycle are determined from a sequence of bubble oscillations. Furthermore, by combining the revised Rayleigh theory, the prolongation factor κ at different dimensionless parameter γ (γ=L/Rmax, where Rmax is the maximum bubble radius and L is the distance of a cavity inception point from a boundary) is obtained. In addition, the prolongation factor of the collapse time versus laser energy is also derived, which are valuable in the fields of hydraulic cavitation, laser lithotripsy and laser ophthalmology.  相似文献   

3.
基于光纤耦合反射式光束偏转法,提出了一种可用于瞬态力学量测试的光学传感器,并详细给出了该测试机理.采用该传感器,在靶材对心处实时检测到由于空泡在固体靶材附近溃灭时射流冲击力引起的靶材瞬态微小变形.通过对该传感器定标可以进一步得到作用冲击力大小.这种传感器的应用将有助于了解激光诱导产生空泡射流运动特性及其对靶材的损伤机制.  相似文献   

4.
The effect of surface tension on the behavior of a liquid-jet is investigated experimentally by means of a fiber-coupled optical beam deflection (OBD) technique. It is found that a target under water is impacted in turn by a laser-plasma ablation force and by a high-speed liquid-jet impulse induced by bubble collapse in the vicinity of a rigid boundary. The liquid-jet impact is found to be the main damage mechanism in cavitation erosion. Furthermore, the liquid-jet increases monotonously with surface tension, so cavitation erosion rises sharply with increasing surface tension. Surface tension also reduces bubble collapse duration. From the experimental results and the modified Rayleigh theory, the maximum bubble radius is obtained and it is found to reduce with increasing surface tension.  相似文献   

5.
赵瑞  徐荣青  沈中华  陆建  倪晓武 《物理学报》2006,55(9):4783-4788
通过自行研制的光偏转测试系统对黏性液体中激光空泡脉动特性进行了实验,获得了激光等离子体空泡前两次脉动全过程,从而判定了空泡在脉动过程中对应的最大和最小泡半径;并将不同黏性系数下空泡脉动结果与基于空泡溃灭理论的计算结果进行了对比.结果表明:液体黏性对空泡生存周期、空泡半径,以及泡壁的运动速度等均有影响.受液体黏性影响,空泡膨胀或收缩过程明显变缓,其相应的生存周期也越长.这一研究结果不仅可促进空化研究的深入,也可为合理利用空化现象提供参考. 关键词: 激光泡 脉动特性 黏性 光纤传感器  相似文献   

6.
圆锥边界附近激光空泡溃灭行为的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李贝贝  张宏超  韩冰  陈军  倪晓武  陆对 《物理学报》2012,61(17):174210-174210
为了研究刚性圆锥边界锥角对激光空泡溃灭行为的影响,文章建立了虚拟平面边界模型, 同时采用阴影摄影术、光偏转法以及数值计算的手段对边界附近空泡溃灭过程进行了研究. 结果表明边界的锥角对空泡的形状、溃灭时间以及液体射流形成均有明显影响. 空泡形状偏离球形的程度和溃灭时间均随锥角的增大而增大,且增大锥角度可以促使射流的形成. 空泡溃灭时间的实验值同理论值具有较高的一致性,验证了虚拟平面边界假设及无量纲距离修正的有效性.  相似文献   

7.
Cavitation damage has been considered as being responsible for many effects in hydraulic machinery and biological medicine. In order to better understand the cavity interaction with nearby solid surfaces, the impact loading induced by the high-speed liquid-jet and subsequent jet flow during the final stage of the bubble collapse in a static fluid is investigated by focusing a Q-switched pulsed laser into water. By means of a new method based on a fibre-coupling optical beam deflection technique, a detailed experimental study has been made to clarify the relationship of the impact pressure against a solid boundary as a function of the dimensionless γ that is generally used to describe the bubble dynamics with its definition γ= s/R_{max}(R_{max} being the maximum bubble radius and s denoting the distance of the cavity inception from the boundary). The experimental results are shown that for γ in the range of about 0.67 to 0.95 with a pulsed laser energy 230mJ, the transient pressure applied on the solid surface is maximum; while for γ>1 or γ<0.67, it is gradually decreased. By combination of our experimental results with the other work that detected the acoustic emission during the bubble collapse at different γ, it is concluded that in this range of 0.67-0.95, the destructive effect due to a liquid-jet and the following jet flow impact actually outweighs the well-known effect of shock wave emission and plays a vital role during the cavitation bubble collapse.  相似文献   

8.
通过压电陶瓷(PZT)水听器获取了液体中激光空泡脉动辐射的声波,并计算了激光空泡在第1次脉动过程中泡内的含气量,结合空泡含气量对空泡最大半径及脉动周期影响的分析,进而分析了含气量对空泡声波频谱特性的影响。分析结果表明:激光空泡第1次脉动过程中泡内的含气量随着作用激光能量的增加而增加,含气量的多少将直接影响空泡运动的剧烈程度;含气量越多,空泡脉动越缓慢,脉动周期越长,空泡脉动辐射声波的峰值频率有向低频移动的趋势。  相似文献   

9.
通过压电陶瓷(PZT)水听器获取了液体中激光空泡脉动辐射的声波,并计算了激光空泡在第1次脉动过程中泡内的含气量,结合空泡含气量对空泡最大半径及脉动周期影响的分析,进而分析了含气量对空泡声波频谱特性的影响。分析结果表明:激光空泡第1次脉动过程中泡内的含气量随着作用激光能量的增加而增加,含气量的多少将直接影响空泡运动的剧烈程度;含气量越多,空泡脉动越缓慢,脉动周期越长,空泡脉动辐射声波的峰值频率有向低频移动的趋势。  相似文献   

10.
刘秀梅  贺杰  陆建  倪晓武 《中国物理 B》2008,17(7):2574-2579
Comprehensive numerical and experimental analyses of the effect of viscosity on cavitation oscillations are performed. This numerical approach is based on the Rayleigh-Plesset equation. The model predictions are compared with experimental results obtained by using a fibre-optic diagnostic technique based on optical beam deflection (OBD). The maximum and minimum bubble radii as well as the oscillation times for each oscillation cycle are determined according to the characteristic signals. It is observed that the increasing of viscosity decreases the maximum bubble radii but increases the minimum bubble radii and the oscillation time. These experimental results are consistent with numerical results.  相似文献   

11.
In the present paper, the collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall is experimentally investigated with a high-speed photography system. For a symmetrical setup, the two primary control parameters of the bubble collapsing behavior include the equivalent maximum bubble radius and the distance between the bubble and the edge of the rigid wall. Based on the bubble interface deformation during the collapsing process, three typical cases are identified for the categorization of the phenomenon with the influences of the parameters revealed. Through a quantitative analysis of the obtained high-speed photos, the motions of the bubble interface in different directions are given together with the calculations of the bubble centroid. The primary findings of the present paper could be summarized in terms of the bubble-edge distance as follows. When the bubble is close to the edge, the movement of the bubble interface near the edge will be restricted with a clear neck formation in the middle part of the bubble. For this case, the edge could delay the bubble collapsing time up to 22% of the Rayleigh collapsing time. When the bubble is of the medium distance to the edge, the differences of the expansion or shrinkage of the bubble interface among different directions will be reduced with an olive-shaped bubble formed during the collapsing process. For this range of parameters, the bubble moves rapidly toward the edge especially during the final collapsing stage. When the bubble is far away from the edge, the bubble will be a nearly spherical one.  相似文献   

12.
The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5–2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP).  相似文献   

13.
赵瑞  徐荣青  梁忠诚  陆建  倪晓武 《物理学报》2009,58(12):8400-8405
采用自行研制的高灵敏度光偏转测试系统,研究黏性液体中激光空泡脉动特性.判定了空泡两次脉动对应的最大和最小泡半径,进而计算了激光空泡在前两次脉动过程中泡内的含气量.研究表明:泡内含气量对泡脉动特性有较大影响.随着脉动次数的增加,空泡泡内含气量增大.空泡最大泡半径随含气量的增加而增大.此外,受液体黏性影响,空泡膨胀和收缩过程明显变缓. 关键词: 含气量 黏性 激光空泡 脉动特性  相似文献   

14.
The interaction between spherical cavitation bubble and flat wall is transformed into that between the real bubble and imaging bubble by the method of images. Firstly, we investigate the dynamics of real bubble and matched, inversed or mis-matched imaging bubble driven by a small amplitude ultrasound, revealing the characteristics of the interaction between cavitation bubble and rigid, soft and impedance walls. Then, we emphatically study the dynamics of real bubble and mis-matched imaging bubble driven by a finite amplitude ultrasound, and the interaction characteristics between cavitation bubble and real impedance wall are revealed. The results show that the cavitation bubble is always close to the rigid wall and far away from the soft wall; For the impedance wall, whether the cavitation bubble is far away or close depends on the specific wall parameters. Moreover, the direction and magnitude of bubble's translation velocity can be changed by adjusting the driving parameters. Understanding the interaction between cavitation bubble and impedance wall is of great significance for efficient application of ultrasonic cavitation.  相似文献   

15.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W.  相似文献   

16.
空化泡液体外围压强的分布   总被引:1,自引:0,他引:1       下载免费PDF全文
张鹏利  林书玉  张涛 《应用声学》2012,31(2):98-102
本文从空化泡动力学理论出发,分别讨论了空化泡在压缩和膨胀时液体中的压强分布情况,并作了数值模拟。研究结果表明,空化泡在膨胀和压缩时其外围压强分布明显不同,不能将其一并而论。发现当空化泡的半径增大时液体的压强在不断变化,压强是先变小后变大。而且这个压强的变化还与待测点距空化泡的距离有关。当空化泡的半径在不断变小时外界的压强在不断增大,当空化泡刚开始压缩时液体中的压强变化情况不是很明显,但当空化泡的半径变到1μm时,空化泡外界压强出现明显变化。当空化泡压缩到较小时,此时再增加外界压强空化泡的半径也不会在有很大的变化。  相似文献   

17.
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid–structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.  相似文献   

18.
The ability of cavitation bubbles to effectively focus energy is made responsible for cavitation erosion, traumatic brain injury, and even for catalyse chemical reactions. Yet, the mechanism through which material is eroded remains vague, and the extremely fast and localized dynamics that lead to material damage has not been resolved. Here, we reveal the decisive mechanism that leads to energy focusing during the non-spherical collapse of cavitation bubbles and eventually results to the erosion of hardened metals. We show that a single cavitation bubble at ambient pressure close to a metal surface causes erosion only if a non-axisymmetric energy self-focusing is at play. The bubble during its collapse emits shockwaves that under certain conditions converge to a single point where the remaining gas phase is driven to a shockwave-intensified collapse. We resolve the conditions under which this self-focusing enhances the collapse and damages the solid. High-speed imaging of bubble and shock wave dynamics at sub-picosecond exposure times is correlated to the shockwaves recorded with large bandwidth hydrophones. The material damage from several metallic materials is detected in situ and quantified ex-situ via scanning electron microscopy and confocal profilometry. With this knowledge, approaches to mitigate cavitation erosion or to even enhance the energy focusing are within reach.  相似文献   

19.
采用强脉冲激光器设计液体环境下刚性壁面空蚀实验平台,改变液体中含气量,利用高速相机观察不同含气量条件下激光空泡在壁面附近的脉动过程,并对刚性壁面造成的空蚀结果进行了观测。实验研究发现,随着液体中相对空气含量的提高,激光空泡脉动的最大尺寸增大,空泡的膨胀运动变剧烈,溃灭运动速度降低,空泡的溃灭强度降低,从而影响到溃灭冲击波和壁面微射流对刚性壁面的冲击速度,减弱了壁面空蚀,而液体中含气量的提高能够降低激光空泡对刚性壁面的空蚀程度。  相似文献   

20.
We quantitatively study cavitation damage non-invasively, in-place and time-resolved at microsecond resolution. A single, laser-induced bubble is generated in an aqueous NaCl solution close to the surface of an aluminum sample. High-speed chronoamperometry is used to record the corrosion current flowing between the sample and an identical aluminum electrode immersed in the same solution. This configuration makes it possible to measure the cavitation damage in the nanometer thin passive layer of the aluminum surface via the corrosion current from the repassivation. Synchronously with the corrosion current, the bubble dynamics is recorded via high-speed imaging. Correlation between the two measurements allows contributing cavitation damage to the respective stages of the bubble dynamics. The largest cavitation-induced currents were observed for the smallest initial bubble-to-surface stand-off distances. As the bubble re-expands and collapses again in several stages, further current peaks were detected implying a sequence of smaller damage. At intermediate stand-offs, the bubble was not damaging and at large stand-off distances, the bubble was only damaging during the second collapse which again occurs at the solid surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号