首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An optical method for measuring glass wool fiber diameter has been proposed and discussed from the viewpoint of practical use. The method is based on both light scattering and light reflection on the glass wool. The method can measure the mean fiber diameter, d, in the area illuminated by laser light in realtime. The accuracy of the method, i.e., the dimensional resolution, was found to be about 0·7 μm within the diameter range of d7·0 μm.  相似文献   

2.
An efficient, high-power mid-infrared laser source based on ZnGeP2 (ZGP) optical parametric oscillator (OPO) is presented. Using a Q-switched Ho:YAG laser as the pump source a total output power of 10.6 W was obtained in the 3–5 μm band at 10 kHz and 8.5 W at 20 kHz. The Ho:YAG laser was pumped by two diode-pumped polarization coupled Tm:YLF lasers. Optical-to-optical efficiency achieved is >8.8% (laser-diode 792 nm to mid-IR 3–5 μm). With a commercial PtSi infrared camera (256×256 pixel focal plane array, 24 μm pitch) the pointing stability of Ho pump, signal and idler beam was measured to be better than 30 μrad. Whilst propagating the OPO beams over 100 m, little absorption for the idler beam was observed, resulting in a significant higher peak-to-peak value of ±22%, whereas the peak-to-peak stability of the signal pulses remained unchanged (±13%). To cite this article: M. Schellhorn et al., C. R. Physique 8 (2007).  相似文献   

3.
The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for concrete have been determined. By employing Beer–Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 470±22 μm and 177±15 μm, respectively. Indeed, this was borne out somewhat from a cross-sectional analysis of the melt region produced by both lasers which showed melting occurred to a greater depth when the CO2 laser was used.  相似文献   

4.
A weak laser beam (0.1 watt) should be able to displace a drop using the Marangoni effect (via an imposed temperature gradient). Temperature shifts of 10° should overcome pinning forces on the supporting surface. The expected drop speeds are rather high. The direction of motion can be monitored optically. The movement of one (or many) droplets may be controlled retroactively. This system should be efficient for drop sizes 10 μm, and less efficient for smaller drops (which do not absorb much energy). To cite this article: P.-G. de Gennes, C. R. Physique 6 (2005).  相似文献   

5.
Very small metal and semiconductor wires are of great interest for experiments on electron and phonon transport in one-dimensional structures. Methods of fabricating wires with sub 0.1μm linewidth are discussed and the procedures used to make a metallic loop of linewidth 20 × 20nm and 50 by 100nm GaAs wires described in detail. The ultimate resolution of electron beam lithography using polymeric resist is reviewed.  相似文献   

6.
Rabi oscillations were observed in the ASR(110), ΔM = 0 and ASQ(222), ΔM = 0 transitions of the ν2 band of 14NH3 in a molecular beam crossed by a CO2 laser beam. The frequency (in terms of the laser field amplitude) of the oscillations was used to determine the transition dipole moment of the ν2 band, yielding μsa = 0.261 ± 0.006 D. The hyperfine structure due to the electric quadrupole interaction of the nitrogen nucleus was clearly resolved.  相似文献   

7.
While quantized conductance steps in short quantum wires are understood through a single electron picture, additional structure often observed in high-quality one-dimensional systems near g=0.7×(2e2/h) is commonly interpreted as arising due to many-body interactions. Most studies of conductance structure below 2e2/h use short one-dimensional wires where transport is known to be ballistic. We report transport measurements for both short (0.5 μm) and long (5 μm) quantum wires, and use both conductance and nonlinear transport to explore the behavior of one-dimensional wires.  相似文献   

8.
We have investigated the acousto-optically Q-switched intracavity second-harmonic generation of 1.06 μm in a 1.9-mm-long BiB3O6 crystal, cut for type-I phase-matching direction of (θ,)=(168.9°,90°), performed in a diode-end-pumped Nd:YVO4 laser. When the incident pump power was 4.3 W at 30 kHz of pulse repetition frequency, a maximum average green output power of 480 mW, the shortest pulse with FWHM width of 72 ns, the highest single pulse energy of 16 μJ and the maximum peak power of 222 W were obtained, giving the corresponding optical conversion efficiency of 11.2%. The effect of varying temperature in BIBO crystal on the average green output power was also investigated.  相似文献   

9.
Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/e2 diameter). The sample was translated at a linear speed of 400 μm/s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.  相似文献   

10.
In this work, a transient photon-electro-thermal (TPET) technique based on step laser heating and electrical thermal sensing is developed to characterize the thermophysical properties of one-dimensional micro/nanoscale conductive and nonconductive wires. In this method, the to-be-measured thin wire/tube is suspended over two electrodes and is irradiated with a step cw laser beam. The laser beam induces a transient temperature rise in the wire/tube, which will lead to a transient change of its electrical resistance. A dc current is applied to the sample, and the resulting transient voltage variation over the wire is measured and used to extract the thermophysical properties of the sample. A 25.4-μm thick Pt wire is used as the reference sample to verify this technique. Sound agreement is obtained between the measured thermal diffusivity and the reference value. Applying the TPET technique, one can measure the thermal diffusivity of conductive single-wall carbon nanotube (SWCNT) bundles and nonconductive cloth fibers. For nonconductive wires, a thin (∼ nm) metallic film is coated on the outside of the wire for electrical thermal sensing. The measured thermal diffusivity for the SWCNT bundle is 2.53×10-5 m2/s, much less than the thermal diffusivity of graphite in the layer direction. For microscale cloth fibers, our experiment shows its thermal diffusivity is at the level of 10-7 m2/s. PACS 78.20.Nv; 42.62.-b; 65.80+n; 66.30.Xj  相似文献   

11.
Chemical oxygen iodine laser (COIL) is a high-power laser with potential applications in both military as well as in the industry. COIL is the only chemical laser based on electronic transition with a wavelength of 1.315 μm, which falls in the near-infrared (IR) range. Thus, COIL beam can also be transported via optical fibers for remote applications such as dismantling of nuclear reactors. The efficiency of a supersonic COIL is essentially a function of mixing specially in systems employing cross-stream injection of the secondary lasing (I2) flow in supersonic regime into the primary pumping (O21Δg) flow. Streamwise vorticity has been proven to be among the most effective manner of enhancing mixing and has been utilized in jet engines for thrust augmentation, noise reduction, supersonic combustion, etc. Therefore, a computational study of the generation of streamwise vorticity in the supersonic flow field of a COIL device employing a winglet nozzle with various delta wing angles of 5°, 10°, and 22.5° has been carried out. The study predicts a typical Mach number of approximately 1.75 for all the winglet geometries. The analysis also confirms that the winglet geometry doubles up both as a nozzle and as a vortex generator. The region of maximum turbulence and fully developed streamwise vortices is observed to occur close to the exit, at x/λ of 0.5, of the winglets making it the most suitable region for secondary flow injection for achieving efficient mixing. The predicted length scale of the scalloped mixer formed by the winglet nozzle is 4λ. Also, the winglet nozzle with 10° lobe angle is most suitable from the point of view of mixing developing cross-stream velocity of 120 m/s with acceptable pressure drop of 0.7 Torr. The winglet geometry with 5° lobe angle is associated with a low cross-stream velocity of 60 m/s, whereas the one with 22.5° lobe angle is associated with a large static and total pressure drop of 1.87 and 9.37 Torr, respectively, making both the geometries unsuitable for COIL systems. The experimental validation shows a close agreement with the computationally predicted values. The studies for the most suitable 10° lobe angle geometry show an observed Mach number of 1.72 with an improved mixing efficiency of 74% due to the occurrence of predicted streamwise vortices in the flow.  相似文献   

12.
Design of an optical fiber sensor for linear thermal expansion measurement   总被引:1,自引:0,他引:1  
Design and operation of an optical fiber device for temperature sensing and thermal expansion measurement are reported. The modulated intensity has been measured by using a pair of 450 μm core fiber, one acting as the source and the other one as receiving fiber. In this design, the light intensity modulation is based on the relative motion of the optical fibers and a reflective coated lens. By using displacement calibration data for this sensor, the linear thermal expansion of the aluminum rod is determined. This sensor shows an average sensitivity of about 11.3 mV/°C for temperature detection and 7 μm/°C for thermal expansion detection. Device resolution for a linear expansion measurement is about 3 μm for a dynamic range of 600 μm corresponding to a temperature change of 100°C. The measured linear expansion results are checked against the expected theoretical ones and an agreement within ±2 μm is noticed. The operation of this sensor was also compared with other types and some advantages are observed, which verify the capability of this design for such precise measurements.  相似文献   

13.
The refractive indices (n) of eight standard oils from Physikalisch Technische Bundesanstalt, Germany were determined with an accuracy of ±1×10−4 by using Abbe Refractometer. The measurements were performed at temperature 20°C in the spectral range 0.4–0.7 μm. The experimental data were fitted to the simple Cauchy dispersion formula and the results were found to be consistent within the limits of experimental error. In all cases, the refractive index decreased monotonically with increasing wavelength. The refractive indices (n) of these oils have been measured as a function of the temperature t (20°C up to 50°C) at λ=0.589 μm and were found to have linear temperature dependencies. The refractive indices of the studied oils and the uncertainty in their values are calculated at λ=0.589. The Lorentz–Lorenz (L–L) formula has been tested and it was found to be valid with a maximum deviation of 0.4% and was used to calculate the molecular polarizability θ.  相似文献   

14.
The neutrino experiment KARMEN is situated at the beam stop neutrino source ISIS which provides νμ's, νe's and from the π+−μ+-decay at rest. The oscillation channels νμ → νe and are investigated with a 56 t liquid scintillation calorimeter. No evidence for oscillations could be found with KARMEN, resulting in 90% CL exclusion limits of sin2(2Θ) < 8.5 · 10−3 ( ) and sin2(2Θ) < 4.0 · 10−2μ → νe) for Δm2 > 100 eV2. In 1996, the experiment has been upgraded by an additional veto counting system with a total coverage of 300 m2. The new system allows the identification of cosmic muons in the vicinity of the detector. Vetoing these muons suppresses energetic neutrons from deep inelastic scattering of muons as well as from μ-capture by a factor of 40. Up to 1996, these neutrons represented the main background for oscillation search. The experimental sensitivity for will be significantly enhanced towards sin2(2Θ) 1.0 · 10−3 after a further measuring period of 2–3 years.  相似文献   

15.
Contribution of the hexagonal-like structural components to the photoinduced second harmonic generation (SHG) in GaN large-sized nanocrystallites (with sizes about the 10–30 nm) incorporated into the polyvinylalcohol photopolymer matrices is revealed. The SHG measurements were done using pulsed Nd:YAG laser beam (λ=1.06 μm; pulse duration τ=15–50 ps, laser power about 30 MW) as a fundamental ones and a picosecond nitrogen pulsed laser (P=10 MW; λ=0.377 μm; pulse time duration τ=10–25 ps) as a photoinducing one. We have found that with increasing pumping power density the SHG output signal increases and achieves its maximum value for the power density about 2.6 GW/cm2 per pulse. The maximal output photoinduced SHG signal was achieved for parallel directions of the pumping and fundamental beam polarizations. The maximal values of the second-order nonlinear susceptibilities were equal to about 1.09 pm/V. We have observed an increase of the output SHG below 30 K and for pump-probe delaying time about 18 ps. Substantial contribution to the SHG of wurtzite-like (hexagonal) structural fragments is shown.  相似文献   

16.
The eigen-oscillation mode of the Nd:YAP cw laser has been analysed. The influence of thermal effects arising from the pumping process on the output character of the 1.3414 μm Nd:YAP cw laser has been discussed. The crack problem of the reflective film at a 1.34 μm dielectric mirror has been solved. Based on the aforementioned work, we have been able to achieve an 82.8 W laser output at 1.3414 μm with a nearly polarized beam from a 5.8 mm diameter by 111 mm Nd:YAP rod. The overall efficiency and the slope efficiency are 1.15% and 2.02% respectively, and the fluctuation of the output power at 62 W is less than 1% during continuous operation for 45 min.  相似文献   

17.
An optical technique to align laser beam with the axis of a rotating stage is proposed for laser fabrication of circular microstructures. The laser beam is first aligned parallel to the rotation axis and subsequently adjusted to coincide with the axis. An optical arrangement consisting of two quadrant photodiodes for the x- and y-directions and a specially designed beam splitter is utilized for the alignment. Mathematical modeling of the alignment system is carried out to estimate alignment errors caused by misalignment of mirror surfaces in the beam path. It is shown that parallelness of the laser beam to the rotation axis is a key factor to reduce alignment errors. The proposed method was applied to a microstereolithography system and proved that the laser beam can be aligned within a distance of about 25 μm from the rotation axis.  相似文献   

18.
We demonstrate that excellent 1.3 μm QD laser performance can be achieved with the use of a high-temperature step during the growth of the GaAs spacer layers. An optimised laser structure exhibits a very low room-temperature Jth and operates CW from the ground-state up to at least 105 °C. Spontaneous emission measurements indicate that the high-temperature performance is limited by non-radiative processes rather than by the thermal excitation of carriers into higher energy QD states.  相似文献   

19.
We report on a measurement of the mass of the Z0 boson, its total width, and its partial decay widths into hadrons and leptons. On the basis of 25 801 hadronic decays and 1999 decays into electrons, muons or taus, selected over eleven energy points between 88.28 GeV and 95.04 GeV, we obtain from a combined fit to hadrons and leptons a mass of Mz=91.154±0.021 (exp)±0.030 (LEP) GeV, and a total width of Γz=2.536±0.045 GeV. The errors on Mz have been separated into the experimental error and the uncertainty due to the LEP beam energy. The measured leptonic partial widths are Γee=81.2±2.6 MeV, Γμμ=82.6± 5.8 MeV, and Γττ=85.7±7.1 MeV, consistent with lepton universality. From a fit assuming lepton universality we obtain Γ+ = 81.9±2.0 MeV. The hadronic partial width is Γhad=1838±46 MeV. From the measured total and partial widths a model independent value for the invisible width is calculated to be Γinv=453±44 MeV. The errors quoted include both the statistical and the systematic uncertainties.  相似文献   

20.
Compressively strained multiple quantum well lasers in the GaInAsSb/AlGaAsSb material system are reported. Indium concentrations between 40% and 47.5% were chosen for the GaInAsSb quantum wells. Compressive strains varied between 1.16% and 1.43%. The lasers worked continuous wave at room temperature up to a wavelength of 2.81 μm. For a laser with 2.93 μm wavelength continuous wave operation was found up to a temperature of −23°C. This laser worked in pulsed operation at 15°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号