首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A determination method for lead in waste water and effluent was studied using flame atomic absorption spectrometry after preconcentration of lead by the rapid coprecipitation technique with gallium phosphate. Lead ranging from 0.5 to 50 microg was quantitatively coprecipitated with gallium phosphate from 100-150 mL sample solution (pH approximately 5). The presence of gallium phosphate did not affect the atomic absorbance of lead. Since the concentration of gallium in the final sample solution is also measurable by flame atomic absorption spectrometry at 250.0 nm without further dilution, the rapid coprecipitation technique, which does not require complete collection of the precipitate, becomes possible using a known amount of gallium and measuring the concentrations of both lead and gallium in the final sample solution by flame atomic absorption spectrometry. The 32 diverse ions tested gave no significant interferences in the lead determination. The method proposed here is rapid and has good reproducibility.  相似文献   

2.
By applying an internal standardization, we could use a rapid coprecipitation technique using lanthanum phosphate as a coprecipitant for preconcentration of iron(III) and lead in their flame atomic absorption spectrometric determination. Indium as an internal standard was added to the initial sample solution together with lanthanum and phosphoric acid; the coprecipitation of iron(III) and lead was then carried out at pH about 3. After measuring the atomic absorbances of iron, lead, and indium in the final sample solution, we determined the contents of iron(III) and lead in the original sample solution by using the internal standardization with indium. In this method, complete collection of the precipitate was not required after the coprecipitation of iron(III), lead, and indium, because the ratio of the recovery of iron(III) or lead to that of indium was almost constant regardless of the recovery of the precipitate. This method was simple and rapid, and was available for the determination of 2-300 micrograms L-1 of iron(III) and 5-400 micrograms L-1 of lead in some water samples.  相似文献   

3.
A coprecipitation technique which does not require complete collection of the precipitate was proposed for the determination of trace lead and cadmium in water with flame atomic absorption spectrometry (FAAS) after preconcentration of lead and cadmium by using cobalt (II) and ammonium pyrrolidine dithiocarbamate (Co-APDC) as coprecipitant and known amount of cobalt as an internal standard. Since lead, cadmium and cobalt were well distributed in the homogeneous precipitate, the concentration ratio of lead to cobalt, and cadmium to cobalt remained unchanged in any part of the precipitate. The amount of lead and cadmium in the original sample solution can be calculated respectively from the ratio of the absorbance values of lead and cadmium to cobalt in the final sample solution that is measured by FAAS and the known amount of the lead and cadmium in the standard series solutions. The optimum pH range for quantitative coprecipitation of lead and cadmium is from 3.0 to 4.5. The 16 diverse ions tested gave no significant interferences in the lead and cadmium determination. Under optimised conditions, lead ranging from 0 to 40?µg and cadmium ranging from 0 to 8?µg were quantitatively coprecipitated with Co-APDC from 100?mL sample solution (pH?~?3.5). This coprecipitation technique coupled with FAAS was applied to the determination of lead and cadmium in water samples with satisfactory results (recoveries in the range of 94.0–108%, relative standard deviations <6.0%).  相似文献   

4.
A continuous precipitation and filtration flow system for the separation of citric acid by precipitation with lead and indirect flame atomic absorption spectrometry is proposed. The precipitate is formed by injecting the lead solution into a carrier containing the sample and is subsequently retained on a filter. By using this reversed precipitation flow-injection configuration, citric acid was determined in the range 2–40 μg mL–1, with a relative standard deviation of 2.9% at a sampling frequency of 60 samples h–1. This method has been applied to the determination of citric acid in fruit juices, carbonated soft drinks and sweets. Received: 19 March 1999 / Revised: 27 May 1999 / Accepted: 31 May 1999  相似文献   

5.
 A new method for the direct determination of lead traces using derivative atom trapping flame atomic absorption spectrometry (DAT-FAAS) with an improved water-cooled stainless steel trapping equipment in an air-acetylene flame was investigated. The optimum conditions concerning the sensitivity were studied. For a 1 min collection, the characteristic concentration (given as derivative absorbance of 0.0044) and the detection limit (3s) were 1.4 ng/mL and 0.27 ng/mL, respectively. This is 361 and 74-fold better than those of the conventional flame atomic absorption spectrometry (FAAS) and comparable to those of graphite furnace atomic absorption spectrometry (GFAAS). The detection limit and sensitivity of DAT-FAAS for a 3 min collection time were 2 and 3 orders of magnitude higher than those of conventional FAAS. The present method was applied to the determination of lead in water and liqueur samples with a recovery range of 94–108% and a relative standard deviation of 3.5–5.6%. Received: 10 January 1996/Revised: 9 December 1996/Accepted: 20 December 1996  相似文献   

6.
The sensitivity of traditional flame atomic absorption spectrometry (FAAS) is low for the determination of lead. Therefore, a simple branched capillary was used for hydride generation with air-acetylene FAAS determination of lead in geochemical samples and paint. Using a Y-shaped connector, the sampling capillary of a traditional FAAS instrument was branched, with one branch for introducing the reductant solution, KBH4, and the other for the sample solution, Pb4+. The KBH4 solution and the Pb4+ solution were then merged and mixed inside the reaction capillary and thereafter inside the nebulizer for generating the lead hydride, which, together with the liquid fine droplets, was directly brought into the air-acetylene flame for atomization without gas/liquid separation. The experimental conditions were optimized for best signal-to-noise ratio (S/N). A calibration curve was obtained with a linear dynamic range of up to 1.0 mg L−1 and a correlation coefficient of 0.9997. The limit of detection (LOD) for lead was found to be 0.004 mg L−1, 10 times better than that of traditional FAAS and slightly better than or equivalent to that of the sophisticated inductively coupled plasma atomic emission spectrometry (ICP-AES). The improvement in sensitivity and the LOD for lead largely owe to the altered atomization mechanism via hydride generation. The proposed method was successfully applied to the determination of lead in Geochemical Standard Deposit (GSD) samples and paint samples.  相似文献   

7.
A cerium(IV) hydroxide coprecipitation method was developed for the determination of some trace elements (Cu, Co, Pb, Cd, Ni) in aqueous solutions, water and sediment samples by flame atomic absorption spectrometry (AAS). Several parameters governing the efficiency of the coprecipitation method were evaluated including pH of sample solution, amount of carrier element, volume of sample solution and the effect of possible matrix ions The procedure was validated by the analysis of GBW 07309 standard reference material sediment and by use of a method based on a solid phase extraction.  相似文献   

8.
A continuous flow atomic absorption spectrometric system was used to develop an efficient on-line preconcentration-elution procedure for the determination of iodide traces. Chromium (VI) is introduced into the flow system and is reduced to chromium (III) in acid medium proportionally to the iodide present in the sample. The Cr(III) reduced by iodide is retained on a minicolumn packed with a poly(aminophosphonic acid) chelating resin, while unreduced Cr(VI) is not retained. Reduced Cr(III) is preconcentrated by passing the sample containing iodide through the system during 3 min, and is then eluted with 0.5 mol L–1 hydrochloric acid and determined by flame atomic absorption spectrometry (FAAS). The detection limit (3σ) obtained is 2.5 μg L–1. Other ions typically present in waters do not interfere. The proposed method allows the determination of iodide in the range 6–220 μg L–1 with a relative standard deviation of 2.7% at a rate of 17 samples h–1. The method has been applied to the determination of iodide in tap and sea waters. Received: 16 September 1999 / Revised: 15 November 1999 / Accepted: 19 November 1999  相似文献   

9.
热喷雾进样火焰原子吸收光谱法测定河水中的铅   总被引:3,自引:0,他引:3  
铅被广泛应用于蓄电池、建筑材料、电缆外套等工业生产中,是造成河水污染的主要原因。铅为生物体有害元素,当其被人体组织吸收后,分布予肝、肾、肺、脑中,损害骨髓造血系统和神经系统。在环境检测中铅是必须检测的元素之一。火焰原子吸收光谱法具有仪器简单、操作方便、抗干扰能力强、稳定性好等特点,但由于雾化效率低和灵敏度低,不能直接用于测定样品中的低含量铅。  相似文献   

10.
Elçi L  Sahin U  Oztaş S 《Talanta》1997,44(6):1017-1023
A method for determination of trace amounts of Cu, Fe, Pb, Mn, Zn, Cd, Ni, Bi and Cr in aqueous solutions by flame atomic absorption spectrometry after coprecipitation by using a combination of sodium diethyldithiocarbamate as a chelating agent and cobalt as a carrier element was introduced. Different factors including amounts of reagents, pH of sample solution, standing time, sample volume for the precipitation and matrix effects were examined. Under selected conditions, the relative standard deviation of the combined method of sample treatment, coprecipitation and determination with flame AAS (n = 9) is generally about 3.5-6.9%; the limits of detection (3 s, n = 20) for the analytes were found to be between 4 and 64 microg 1(-1). The procedure was applied to the analysis of sea water and dialysis concentrate samples with quantitative recovery, > or =95%.  相似文献   

11.
ABSTRACT

Tandem dispersive liquid liquid microextraction coupled with micro - sampling flame atomic absorption spectrometry for rapid determination of lead2 and cadmium2 ions in environmental water samples. A simple method termed as tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry is used for determination of the lead(II) and cadmium(II) ions in different environmental water samples. According to the proposed method, the target analytes are extracted from an aqueous sample solution (10 mL) into a micro-volume of an organic solvent, and then they are selectively back-extracted into an aqueous acceptor solution (150 μL) to increase the compatibility of the extractant phase with a final analyser system and provide a suitable enrichment factor. The developed method is very fast, implemented in just about 7 min, and provides a high sample clean-up. The factors influencing the extraction efficiency including the type and volume of the organic solvent, pH and volume of the acceptor solution, and number of extractions are thoroughly examined and optimised. Under the optimal experimental conditions, the developed method provides a good linearity (in the range of 0.4–300 ng mL?1 (R2 ≥ 0.994)), and low limits of detection (in the range of 0.07–0.31 ng mL?1). Finally, the method is successfully applied for the direct determination of the understudied analytes in the river, dam, and well water samples.  相似文献   

12.
原子吸收法测定血清中的无机磷和钙   总被引:1,自引:0,他引:1  
本文叙述了用原子吸收法测定同一个少量血清样品中的无机磷和钙。血清用高氨酸沉淀蛋白后,加过量钼酸铵。在pH0.4~1.6范围内,用乙酸丁酯萃取生成的微量磷钼酸,与过量的钼酸铵分离。水相测钙,有机相用稀氨水反萃后测钼,间接分析磷。  相似文献   

13.
The suitability of 1-nitroso-2-naphthol as a complexing agent for on-line preconcentration of copper using RP-C18 material in a microcolumn with flow injection coupled with flame atomic absorption spectrometry (FI-FAAS) has been tested. Various parameters affecting complex formation, such as pH, sample flow rate, etc. and its elution into the nebulizer of FAAS were optimized. ?A 5 × 10–3 mol/L reagent was on-line mixed with aqueous sample solution acidified with 0.1% (v/v) nitric acid ?(pH 3–4) and flowed through the microcolumn for 30 s. The adsorbed complexes in the microcolumn were eluted with ethanol in 10 s into the nebulizer of FAAS. A good precision (1.7% for 50 μg/L copper, n = 12), high enrichment factor (19) with detection limit (3σ) 2.0 μg/L, and sample throughput (90 h–1) were obtained. The method was applied to certified reference materials seawater, mussel (biological), NBS-362 and NBS-364 (special low alloy steel), for the determination of copper, and the results were in good agreement with the certified values. Received: 4 May 1999 / Revised: 25 June 1999 / Accepted: 29 June 1999  相似文献   

14.
悬浮液进样-火焰原子吸收光谱法测定中草药中的微量铜   总被引:15,自引:5,他引:10  
将悬浮液进样技术应用于火焰原子吸收光谱法,建立了快速测定中草药中微量铜的新方法。将样品磨细,制成悬浮液,喷入空气-乙炔火焰,以空白溶液为参比,用氘灯进行背景和扣除,以标准加入法测定。测定结果与灰化法一致,两种方法的相对误差小于±3.6%,RSD小于2.5%,检出限为0.057mg/L。  相似文献   

15.
Some possible errors are pointed out, which can occur in the determination of lead and a method is described which minimizes these errors. The loss of lead during the dry-ashing-procedure was determined in dependence on the temperature in the sample measured by immersed thermocouples. It is not advisable to transfer ashing data from one foodstuff (e.g. vegetable) to foodstuffs of different composition (e.g. meat); such data must be determined experimentally. Many matrix elements in ash solutions influence the lead determination by atomic absorption spectroscopy. By H2S coprecipitation of lead and added silver ions as PbS/Ag2S this disturbance can be avoided and the lead concentration is simultaneously increased. With the aid of a nitrate-carbonate melt before the H2S coprecipitation the residual carbon of the ash is removed and acid-insoluble compounds are made accessible. The use of hydrofluoric acid for destroying the silicates, which is disadvantageous, can thus be omitted. The lead content in the final solution is determined in an atomic absorption spectrometer by comparison with a standard solution of appropriate concentration.  相似文献   

16.
火焰原子吸收光谱法测定水样中铅含量的不确定度评定   总被引:3,自引:1,他引:2  
通过采用火焰原子吸收光谱法测定水样中铅的不确定度各项来源和评定方法的分析,建立一种分析实验室不确定度的评定方法,使实验结果更有客观性和准确性.  相似文献   

17.
 A mixture of manganese dioxide and hydrochloric acid has been used for the accurate and precise determination of gold in various gold-bearing matrices. Results of intermethod comparison studies, F-test on variances, Mann-Whitney U-test, Spearman rank correlation and regression analyses are presented. The recommended method can be applied to a quality control programme and for the evaluation of reference materials. Various standard reference materials (SRM) of diverse matrices have been examined to check the validity of the method and the results were found to be in very good agreement with the certified data. Sample decomposition is straight forward [1–10 g sample (roasted at 600–700 °C)+5 g of MnO2+30 mL of 2 mol/L HCl]. Gold is coprecipitated with potassium tellurite using tin (II) chloride solution. The precipitate is extracted into toluene and finally stripped back into aqua-regia solution for final nebulization into an air-acetylene flame for atomic absorption spectrophotometry. The method is very simple and easily adaptable, and more convenient than conventional methods involving aqua regia or a hydrobromic acid-bromine water mixture. Received: 23 October 1995/Revised: 18 March 1996/Accepted: 23 March 1996  相似文献   

18.
A sensitive and selective flow injection time-based method for on-line preconcentration/separation and determination of gallium by flame atomic absorption spectrometry at trace levels was developed. The on-line formed gallium chloride complex is sorbed onto a polyether-type polyurethane foam mini-column, followed by on-line quantitative elution with isobutyl methyl ketone and direct introduction into the flame pneumatic nebulizer of the atomic absorption spectrometer. All chemical and flow variables of the system as well as the possible interferences were studied. The manner of strong HCl solutions propulsion was investigated and established using a combination of two displacement bottles. For 90 s preconcentration time, a sample frequency of 28 h−1, an enhancement factor of 40, a detection limit of 6 μg l−1 and a precision expressed as relative standard deviation (sr) of 3.3% (at 1.00 mg l−1) were achieved. The calibration curve is linear over the concentration range 0.02-3.00 mg l−1. The accuracy of the developed method was sufficient and evaluated by the analysis of a silicon-aluminum alloy standard reference material. Finally, it was successfully applied to gallium determination in commercial aluminum alloys, natural waters and urine.  相似文献   

19.
建立了火焰原子吸收光谱法测定高铋铅中铜含量的方法。研究了多种溶样方法,最终采用硝酸-酒石酸溶解试样,在硝酸(10%)介质中以火焰原子吸收光谱法测定溶液中的铜量,加标回收率在99.4%~105%,相对标准偏差(RSD,n=7)小于3.5%。方法操作过程简单,精密度高,回收率良好,能够较好地满足分析检测的要求。  相似文献   

20.
Determination of the metal content of sewage sludges is of increasing importance in order to assess the suitability of the sludge for disposal to agricultural land. The methods currently used for the determination of cadmium, chromium, copper, nickel, lead and zinc are time-consuming. A rapid electrothermal atomic absorption procedure with homogenization as the only pretreatment is compared with wet and dry pretreatment methods followed by flame atomic absorption spectrometry, in a statistically designed experiment. The precision of the rapid electrothermal atomic absorption procedure compares well with flame atomic absorption in conjunction with all pretreatment methods used. Time saved by the use of this method is substantial; the procedure could be used advantageously for routine analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号