首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The equilibrium parameters for the adsorption of Mo(VI) on gamma-Al(2)O(3) and of Co(II) and Pt(IV) on MoO(3)/gamma-Al(2)O(3) were determined. The adsorption isotherms were performed from aqueous solutions of the corresponding precursors on two different alumina supports. According to the classification given by Giles, L-type-shaped, subgroup 2, adsorption curves were found for the system Mo on gamma-Al(2)O(3), L-type, subgroup 1, for the Pt on MoO(3)/gamma-Al(2)O(3), and S-type for Co on the MoO(3)/gamma-Al(2)O(3) system. Numerical calculations were carried out for all the isotherms to find the equilibrium parameters. These constants are being used to model the development of Pt, Co, and Mo profiles on MoO(3)/gamma-Al(2)O(3) or gamma-Al(2)O(3) extrudates, respectively, which belong to the new generation of noble-metal-MoO(3)/gamma-Al(2)O(3)-supported catalysts to be used in oil-refining processes. Copyright 2001 Academic Press.  相似文献   

2.
Nonmetallic impurities segregated onto metal surfaces are able to drastically decrease the chemical reactivity of metals. In the present paper, effects of bulk impurities on the reactivity of metallic surfaces were investigated in a wide temperature range on an example of the sticking of hydrogen molecules and atoms to Nb [polycrystalline, with mainly (100)] containing solute oxygen. At all the investigated surface temperatures, T(S) (300-1400 K), we found the bulk oxygen concentration C(O) to have a strong effect on the integral probability, alpha(H(2) ), of dissociative sticking of H(2) molecules followed by hydrogen solution in the metal lattice: alpha(H(2) ) monotonically decreased by orders of magnitude with increasing C(O) from 0.03 to 1.5 at. %. The sticking coefficient alpha(H(2) ) was found to depend on T(S) but not on the gas temperature. The effect of C(O) on alpha(H(2) ) is explained by the presence of oxygen-free sites (holes in coverage) serving as active centers of the surface reaction in the oxygen monolayer upon Nb. In contrast to H(2) molecules, H atoms were found to stick to, and be dissolved in, oxygen-covered Nb with a probability comparable to 1, depending neither on C(O) nor on T(S). This proves that, unlike H(2) molecules, H atoms do stick to be dissolved mainly through regular surface sites covered by oxygen and not through the holes in coverage.  相似文献   

3.
The adsorption and dissociation of NH(3) on the clean and hydroxylated TiO(2) rutile (110) surfaces have been investigated by the first-principles calculations. The monodentate adsorbates such as H(3)N-Ti(a), H(2)N-Ti(a), N-Ti(a), H(2)N-O(a), HN-O(a), N-O(a) and H-O(a), as well as the bidentate adsorbate, Ti-N-Ti(a) can be formed on the clean surface. It is found that the hydroxyl group enhances the adsorption of certain adsorbates on the five-fold-coordinated Ti atoms (5c-Ti), namely H(2)N-Ti(a), HN-Ti(a), N-Ti(a) and Ti-N-Ti(a). In addition, the adsorption energy increases as the number of hydroxyl groups increases. On the contrary, the opposite effect is found for those on the two-fold-coordinated O atoms (2c-O). The enhanced adsorption of NH(x) (x = 1-2) on the 5c-Ti is due to the large electronegativity of the OH group, increasing the acidity of the Ti center. This also contributes to diminish the adsorption of NH(x) (x = 1-2) on the two-fold-coordinated O atoms (2c-O) decreasing its basicity. According to potential energy profile, the NH(3) dissociation on the TiO(2) surface is endothermic and the hydroxyl group is found to lower the energetics of H(2)N-Ti(a)+H-O(a) and HN-Ti(a)+2{H-O(a)}, but slightly raise the energetic of Ti-N-Ti(a)+3{H-O(a)} compare to those on the clean surface. However, the dissociation of NH(3) is found to occur on the hydroxylated surface with an overall endothermic by 31.8 kcal/mol and requires a barrier of 37.5 kcal/mol. A comparison of NH(3) on anatase surface has been discussed. The detailed electronic analysis is also carried out to gain insights into the interaction nature between adsorbate and surface.  相似文献   

4.
Adsorption and decomposition of cyclohexanone (C(6)H(10)O) on Pt(111) and on two ordered Pt-Sn surface alloys, (2 × 2)-Sn/Pt(111) and (√3 × √3)R30°-Sn/Pt(111), formed by vapor deposition of Sn on the Pt(111) single crystal surface were studied with TPD, HREELS, AES, LEED, and DFT calculations with vibrational analyses. Saturation coverage of C(6)H(10)O was found to be 0.25 ML, independent of the Sn surface concentration. The Pt(111) surface was reactive toward cyclohexanone, with the adsorption in the monolayer being about 70% irreversible. C(6)H(10)O decomposed to yield CO, H(2)O, H(2), and CH(4). Some C-O bond breaking occurred, yielding H(2)O and leaving some carbon on the surface after TPD. HREELS data showed that cyclohexanone decomposition in the monolayer began by 200 K. Intermediates from cyclohexanone decomposition were also relatively unstable on Pt(111), since coadsorbed CO and H were formed below 250 K. Surface Sn allowed for some cyclohexanone to adsorb reversibly. C(6)H(10)O dissociated on the (2 × 2) surface to form CO and H(2)O at low coverages, and methane and H(2) in smaller amounts than on Pt(111). Adsorption of cyclohexanone on (√3 × √3)R30°-Sn/Pt(111) at 90 K was mostly reversible. DFT calculations suggest that C(6)H(10)O adsorbs on Pt(111) in two configurations: by bonding weakly through oxygen to an atop Pt site and more strongly through simultaneously oxygen and carbon of the carbonyl to a bridged Pt-Pt site. In contrast, on alloy surfaces, C(6)H(10)O bonds preferentially to Sn. The presence of Sn, furthermore, is predicted to make the formation of the strongly bound C(6)H(10)O species bonding through O and C, which is a likely decomposition precursor, thermodynamically unfavorable. Alloying with Sn, thus, is shown to moderate adsorptive and reactive activity of Pt(111).  相似文献   

5.
The nondissociative adsorptions of O(2) on the neutral and anionic Au(24) have been studied using the density functional theory (DFT) in the generalized gradient approximation. Their geometrical structures are optimized by using a combination of the relativistic effective core potential and all-electron potential with scalar relativistic corrections. It is found that the adsorptions of O(2) on the tubelike Au(24) and Au(24) (-) are more stable than it on their space-filled counterparts. Mulliken population analysis shows that the O(2) adsorbed on the tubelike Au(24) and Au(24) (-) got more electrons than on the amorphous ones, which may be a reason why the O(2) can be adsorbed more easily on the former rather than on the latter. Compared with the previous DFT studies of O(2) adsorbed on small Au(n) (n< or =10) clusters, we have shown that the O(2) can also be adsorbed on the neutral even Au(24) with an adsorption energy compatible with that on the small neutral odd gold clusters, but the adsorption energy of O(2) on the anionic Au(24) (-) is lower than that on the small anionic Au(n) with even n. In all the optimized geometrical structures of the O(2)-adsorbed Au(24) and Au(24) (-) clusters, including both tubelike and amorphous ones, we found that O(2) prefers its two O atoms to be attached to two near gold atoms with the least coordination number rather than only one O atom to be attached to one gold atom.  相似文献   

6.
环氧丙烷(PO)是一种重要的化工原料,可用于合成多种特殊化学品及材料[1].其中在某些化学品合成过程中,经常以均相酸或碱作催化剂,例如在合成有机溶剂丙二醇醚的过程中就用到了矿物酸或苛性碱.虽然均相酸或碱作催化剂有活性高、选择性好等优点,但同时存在产物与催化剂分离、腐蚀和废液处理等多种弊端,因此在一些反应过程中人们正积极探求用符合要求的多相催化法来代替均相催化法.A l2O3、ZnO和MgO分别具有酸性、两性和碱性并已用于多种催化反应中[2,3],本文通过IR光谱法研究了环氧丙烷在MgO,A l2O3和ZnO上的吸附活化态.在这些氧化物中…  相似文献   

7.
Pd(ii) pincer adsorbate molecules (1) were inserted into self-assembled monolayers (SAMs) of alkanethiols with different chain lengths (C(8) to C(18)) on annealed gold substrates. Their presence was brought to expression by reaction of with Au nanoclusters bearing phosphine moieties (2). The surface-confined Au nanoclusters were observed only on the shorter chain SAMs (C(8)SH to C(16)SH) and not on C(18)SH SAMs. This is attributed to the longer chain length of C(18)SH preventing the insertion of pincer molecules. Microcontact printing (microCP) with C(18)SH on unannealed gold substrates and the subsequent immersion of the substrates into C(8)SH, C(10)SH, C(12)SH, or C(16)SH solutions, yielded a series of patterned SAMs that have areas of thiols of different chain lengths. Insertion of 1 followed by expression using 2, or insertion of 3 showed inserted molecules only in the shorter chain SAM areas. The absolute particle densities in the former case were higher than on the corresponding homogeneous SAMs on annealed substrates, probably due to larger numbers of defects in the SAMs on unannealed substrates.  相似文献   

8.
The decomposition of methoxide (CH(3)O) on a PdZn alloy is considered to be the rate-limiting step of steam re-forming of methanol over a Pd/ZnO catalyst. Our previous density functional (DF) studies (Langmuir 2004, 20, 8068; Phys. Chem. Chem. Phys. 2004, 6, 4499) revealed only a very low propensity of defect-free flat (111) and (100) PdZn surfaces to promote C-H or C-O bond breaking of CH(3)O. Thus, we applied the same DF periodic slab-model approach to investigate these two routes of CH(3)O decomposition on PdZn(221) surfaces that expose Pd, (221)(Pd), and Zn, (221)(Zn), steps. C-H bond cleavage of CH(3)O is greatly facilitated on (221)(Pd): the calculated activation energy is dramatically reduced, to approximately 50 kJ mol(-1) from approximately 90 kJ mol(-1) on flat PdZn surfaces, increasing the rate constant by a factor of 10(8). The lower barrier is mainly due to a weaker interaction of the reactant CH(3)O and an enhanced interaction of the product CH(2)O with the substrate. The activation energy for C-O bond scission did not decrease on the (221)(Pd) step. On the (221)(Zn) step, the calculated reaction barriers of both decomposition routes are even higher than on flat surfaces, because of the stronger adsorption of CH(3)O. Steps (and other defects) appear to be crucial for methanol steam re-forming on Pd/ZnO catalyst; the stepped surface PdZn(221)(Pd) is a realistic model for studying the reactivity of this catalyst.  相似文献   

9.
The adsorption of Am(III) (total concentration 10(-9) mol/l) on alumina, silica, and hematite was studied by a batch technique. The effects of pH, ionic strength, and humic substances on the adsorption of Am(III) on alumina and silica were investigated, and the adsorption isotherms of Am(III) on alumina and silica at different pH values were determined. It was found that compared with the adsorption of Am(III) on alumina, the adsorbability of silica on the basis of mass is less, the relative adsorption rate on silica is slower, the sensitivity of adsorption on silica to ionic strength is less, the dependence of adsorption on silica on pH is gentler, and consequently that the adsorption characteristics of Am(III) on alumina and silica are distinctly different. The negative effect of fulvic acid on the adsorption on silica and the positive effect of humic acid on the adsorption on alumina were found. In contrast to the Am(III) adsorption on alumina and silica, a tremendously high adsorbability of Am(III) on hematite was found. The sequence of adsorbabilities of Am(III) on the basis of mass is Fe2O3 > Al2O3 > SiO2.  相似文献   

10.
Raju AR  Seshadri K  Rao CN 《Talanta》1992,39(11):1543-1547
Sensor characteristics of V(2)O(5) dispersed on oxide supports such as Al(2)O(3), TiO(2) and ZrO(2) with respect to various gases and vapours including liquefied petroleum gas (LPG) have been investigated. Of all the systems studied, 20 mol% V(2)O(5) dispersed on ZrO(2) shows the highest sensitivity for LPG, the log sensitivity-log concentration (in ppm) plots being linear up to 1000 ppm or more. The sensitivity is not affected by humidity or recycling. Addition of P(2)O(5) to V(2)O(5) however destroys the sensitivity. Considering all aspects, 20 mol% V(2)O(5)/ZrO(2) is suggested for use as a practical LPG sensor. ESR spectroscopy indicates the formation of V(4+) species on exposure of V(2)O(5)/ZrO(2) or TiO(2) to LPG. In-situ high-temperature x-ray diffraction measurements show the formation of an unusual monoclinic form of VO(2) on exposure to LPG at 625 K which gets oxidized back to V(2)O(5) on exposure to air.  相似文献   

11.
Phospholipid polymer, poly[2-methacryloyloxyethyl phosphorylcholine (MPC)], was grafted with polyethylene (PE) membrane using photoinduced polymerization technique to make the membrane resistant to cell adhesion. The water contact angle on the PE membrane grafted with poly(MPC) decreased with an increase in the photopolymerization time. This decrease corresponded to the increase in the amount of poly(MPC) grafted on the PE surface. The same graft polymerization procedure was applied using other hydrophilic monomers, such as acrylamide (AAm), N-vinylpyrrolidone (VPy) and methacryloyl poly(ethylene glycol) (MPEG). These monomers were also polymerized to form grafted chains on the PE membrane, and the grafting was confirmed with X-ray photoelectron spectroscopy. Analysis of amount and distribution of plasma proteins at the plasma-contacting surface of the original and the modified PE membranes were analyzed using immunogold assay. The grafting of poly(MPC) and poly(VPy) on PE membrane reduced the plasma protein adsorption significantly compared with that on the original PE membrane. However, the PE membranes grafted with poly(AAm) or poly(MPEG) did not show any effects on protein adsorption. Platelet adhesion on the original and modified PE membranes from platelet-rich plasma was also examined. A large number of platelets adhered and activated on the original PE membrane. Grafting with poly(AAm) did not suppress platelet adhesion, but grafting with poly(MPC) or poly(VPy) on the PE membrane was effective in preventing platelet adhesion. It is concluded that the introduction of the phosphorylcholine group on the surface could decrease the cell adhesion to substrate polymer.  相似文献   

12.
In this work a modified adsorption method was used to form firstly a saturated Cd or Pb adlayer on platinum single crystal (100) surface, then its surface structure, the electrochemical stability and the desorption-readsorption CV properties were studied. The HCOOH oxidation has been used as a probe to determine the electrocatalytic propertics of Pt (100) with different surface concentration of Cd or Pb adatoms. The results show that Cd adatoms on Pt(100) inhibit both HCOOH dissociation adsorption (to form poisoning intermediates) and HCOOH oxidation via the reactive intermediate, and that Pb adatoms on Pt(100) inhibit only HCOOH disociation adsorption but catalyse HCOOH oxidation via the reactive intermediate, in this case the more Pb adatoms on Pt(100), the higher te catalytic effect. The highest enhanced catalytic effet has been found with the saturated Pb adlayer on Pt(100) (the coverage of Pb, calibrated by hydrogen adsorption, is then equal to 1.0), i.e. with a surface structure of C(2×2)-bridged Pb. The difference of influence to the hydrogen adsorption-desorption process and the different catalytic effect on HCOOH oxidation of Cd and Pb adatoms on Pt(100) were attributed to the intrinsic properties of Cd and Pd elements and also to their interaction with Pt(100). This results indicate that the electrocatalytic mechanism of Cd and Pb adatom on Pt(100) depends on the geometrical surface structure effect and, more importantly, on the electro structure effect during the interaction of adatoms with Pt(100) surface atoms.  相似文献   

13.
The influence of magnetite (Fe(3)O(4)) nanoparticles on the rheological properties of kappa-, iota- and lambda-carrageenan gels has been investigated. Small amplitude oscillatory shear measurements were performed to study the effect of the presence of Fe(3)O(4) nanoparticles with particle sizes of ca. 10 nm on the gel properties, as a function of carrageenan type, carrageenan concentration and magnetite load. The formation of Fe(3)O(4) nanoparticles on the presence of biopolymer was observed to promote the gelation process and lead to stronger gels as indicated by an increase in the gel viscoelastic moduli and of the gelation temperature. This effect was more marked for kappa-carrageenan than for iota- and lambda-carrageenan and has been proposed to depend not only on Fe(3)O(4) concentration but also on the concentration of potassium ions. A mechanism based on the combined effect of Fe(3)O(4) nanoparticles and potassium ions was suggested, involving the adsorption of potassium ions on the negatively charged surface of the Fe(3)O(4) nanoparticles, thus leading to an increase of the potassium ion concentration within the "carrageenan cages" containing the magnetite. This would, therefore, promote more extensive biopolymer helical aggregation, thus resulting in the formation of a stronger kappa-carrageenan gel in the presence of Fe(3)O(4), as observed. Since iota- and lambda-carrageenan gels are known to be less sensitive to potassium ions concentration, the effect of precipitating Fe(3)O(4) within these biopolymers is reduced.  相似文献   

14.
The low-temperature adsorption of N(2) on Rh/SiO(2) samples of various particle-size distributions was followed by FTIR. The addition of O(2) pulses on Rh(0) surfaces saturated with chemisorbed N(2) allowed us to reassign stretching frequencies attributed originally to N(2)-Rh(0) to N(2)-Rh(delta+). The formation of the latter oxidized Rh species is assumed to be induced by an electron withdrawal from adsorbed oxygen species on Rh surface centers neighboring those onto which N(2) species are chemisorbed. The present work, thus, enables us to delimit ranges of frequencies for which the adsorption of N(2) can be considered to occur on either Rh(0) or Rh(delta+) centers for nu(N2) lower or higher than 2243 cm(-1), respectively. The N(2)-FTIR experiments performed on the studied catalysts also suggest a lattice plane selectivity for N(2) adsorption on metallic Rh planes of different natures which, to our knowledge, has not been reported yet for Rh.  相似文献   

15.
Micro volume changes due to Pb(II) and Cu(II) sorption on amorphous Fe(III) hydroxide (AFH) were determined by a dilatometer at pH 4.50. Volume change is attributed to change in hydration status of dissolved and/or suspended substances. The volume of the system increased due to Pb(II) and Cu(II) sorption, suggesting that water molecules hydrated around Pb(II) or Cu(II) ions and AFH were released during sorption. Volume increases due to Pb(II) and Cu(II) sorption were smaller than those due to bulk precipitation of Pb and Cu hydroxides. Precipitation of Pb(II) and Cu(II) was not likely to occur at pH 4.50 in the presence of AFH. In conclusion, Pb(II) and Cu(II) formed an inner-sphere complex on AFH at pH 4.50, keeping hydrated water on the adsorbed species. Adsorbed Cu(II) kept more hydrated water than adsorbed Pb(II) on AFH.  相似文献   

16.
The reactivity of Cu monolayer (ML) and bilayer films grown on Ru(0001) towards O(2) and H(2) has been investigated. O(2) initial sticking coefficients were determined using the King and Wells method in the incident energy range 40-450 meV, and compared to the corresponding values measured on clean Ru(0001) and Cu(111) surfaces. A relative large O(2) sticking coefficient (~0.5-0.8) was measured for 1 ML Cu and even 2 ML Cu/Ru(0001). At low incident energies, this is one order of magnitude larger than the value observed on Cu(111). In contrast, the corresponding reactivity to H(2) was near zero on both Cu monolayer and bilayer films, for incident energies up to 175 meV. Water adsorption on 2 ML Cu/Ru(0001) was found to behave quite differently than on the Ru(0001) and Cu(111) surfaces. Our study shows that Cu/Ru(0001) is a highly selective system, which presents a quite different chemical reactivity towards different species in the same range of collision energies.  相似文献   

17.
Seamless control of resistance to liquid drop movement for polar (water) and nonpolar alkane (n-hexadecane, n-dodecane, and n-decane) probe liquids on substrate surfaces was successfully demonstrated using molten linear poly(dimethylsiloxane) (PDMS) brush films with a range of different molecular weights (MWs). The ease of movement of liquid drops critically depended on polymer chain mobility as it relates to both polymer MW and solvent swelling on these chemically- and topographically identical surfaces. Our brush films therefore displayed lower resistances to liquid drop movement with decreasing polymer MW and surface tension of probe liquid as measured by contact angle (CA) hysteresis and tilt angle measurements. Subsequently, while mobility of water drops was inferior and became worse at higher MWs, n-decane drops were found to experience little resistance to movement on these polymer brush films. Calculating CA hysteresis as Δθ(cos) = cos θ(R) - cos θ(A) (θ(A) and θ(R) are the advancing and receding CAs, respectively) rather than the standard Δθ = θ(A) - θ(R) was found to be advantageous for estimation of the actual dynamic dewetting behavior of various probe liquids on an inclined substrate.  相似文献   

18.
The adsorption of H(2)O(2) on Pt and Pt-M alloys, where M is Cr, Co, or Ni, is investigated using density functional theory. Binding energies calculated with a hybrid DFT functional (B3PW91) are in the range of -0.71 to -0.88 eV for H(2)O(2) adsorbed with one of the oxygen atoms on top Pt positions of Pt(3), Pt(2)M, and PtM(2), and enhanced values in the range of -0.81 to -1.09 eV are found on top Ni and Co sites of the Pt(2)M clusters. Adsorption on top sites of Pt(10) yields a weaker binding of -0.48 eV, whereas on periodic Pt(111) and Pt(3)Co(111) surfaces, H(2)O(2) generally dissociates into two OH radicals. On the other hand, attempts to attach H(2)O(2) on bridge sites cause spontaneous dissociation of H(2)O(2) into two adsorbed OH radicals, suggesting that stable adsorptions on bridge sites are not possible for any of the clusters or extended surfaces that are being studied. We also found that the water-H(2)O(2) interaction reduces the strength of the adsorption of H(2)O(2) on these clusters and surfaces.  相似文献   

19.
Adsorption of small amounts of D(2)O (ca. 0.01 L exposure) on CO(sat)/Pt(100) surfaces in ultrahigh vacuum at 105 K was found to split the asymmetric peak at 2100 cm(-1) in the infrared reflection absorption spectra attributed to the stretching of CO adsorbed on atop sites into two clearly defined features: an intense component, which shifted toward lower energies due to surface hydration of adsorbed CO (originally at 2100 cm(-1), peak a), and a smaller peak centered at 2094 cm(-1) (peak b), which remained fixed in position even after closing the D(2)O dosing valve. The energies of peaks a and b, as determined by statistical analyses, correlated very well with those reported in the literature for CO adsorbed at high coverages on Pt(100) originally in the (5 x 20) or (hex) reconstruction, and on the unreconstructed Pt(100)-(1 x 1), respectively, at 90 K. On these bases, the asymmetry of the peak observed for CO(sat)/Pt(100) (no D(2)O dosing) is ascribed to the presence of CO linearly adsorbed on these two different sites on the surface, for which the rate of hydration is larger for the (5 x 20) compared to the (1 x 1) phases.  相似文献   

20.
Configuration interaction calculations have been carried out on electronic states of the NaLi molecule and the cation NaLi(+). Potential energy curves are presented for the lowest nine (1)Sigma(+), seven (1)Pi, four (1)Delta, eight (3)Sigma(+), seven (3)Pi, and four (3)Delta states of NaLi as well as for the lowest ten (2)Sigma(+), six (2)Pi, and two (2)Delta states of NaLi(+). The results of the present many-electron configuration interaction calculations on the cation are in support of previous core-polarization effective potential calculations. The present calculations on the NaLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously as well as an investigation of nonadiabatic effects leading to spectral perturbations. Furthermore, ab initio potential energy curves of the neutral and the ground state of the cation are employed to determine quantum defect that may be employed to generate potential energy curves for nd and (n+1)p (for n>3) Rydberg states of NaLi. The present results on the 3 (1)Pi and 4 (1)Pi states are in good agreement with recent experimental work, whereas on the basis of theoretical data, the recently observed state 5 (1)Pi is better described as 6 (1)Pi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号