首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文通过对不同构型的二核钼簇合物簇胳结构的分子轨道计算,揭示了Mo—B(T)原子间的多中心d-p π键与该结构的稳定性及结构参数α、θ和R之间的内在联系,提出了2~6核高氧化态钼簇合物的簇胳由“碎片结构”组合而成的设想,该模型对以μ_2-S_2为桥的三核钼簇合物中的“共面—异面”规则和簇胳为[Mo_4S_3O]~(6+)的钼簇中的反常Mo—Mo键距给出合理解释,确认了桥原子对Mo—Mo键长和键强的决定作用。  相似文献   

2.
Results describing the interaction of a single sulfur atom with cationic gold clusters (Au(n) (+), n=1-8) using density functional theory are described. Stability of these clusters is studied through their binding energies, second order differences in the total energies, fragmentation behavior, and atom attachment energies. The lowest energy structures for these clusters appear to be three dimensional right from n=3. In most cases the sulfur atom in the structure of Au(n)S(+) is observed to displace the gold atom siting at the peripheral site of the Au(n) (+) cluster. The dissociation channels of Au(n)S(+) clusters follow the same trend as Au(n) (+) cluster, based on the even/odd number of gold atoms in the cluster, with the exception of Au(3)S(+). This cluster dissociates into Au and Au(2)S(+), signifying the relative stability of Au(2)S(+) cluster regardless of having an odd number of valence electrons. Clusters with an even number of gold atoms dissociate into Au and Au(n-1)(S)(+) and clusters with an odd number of gold atoms dissociate into Au(2) and Au(n-2)(S)(+) clusters. An empirical relation is found between the conduction molecular orbital and the number of atoms in the Au(n)S(+) cluster.  相似文献   

3.
用分子图形软件设计出49种硫原子团簇Sn+(n=3~13)的结构,使用B3LYP密度泛函进行几何构型优化和振动频率计算,根据分子的总能量得出最稳定的同分异构体.在硫原子团簇正离子中,大部分原子为二配位成键.带有一、三配位的原子结构的总能量较高.部分最稳定硫原子团簇正离子的构型与最稳定的中性硫原子团簇的构型完全不同.  相似文献   

4.
Density functional theory B3PW91/6-31+G* calculations on BenCm (n=1-10; m=1, 2, ..., to 11-n) clusters have been carried out to examine the effect of cluster size, relative composition, binding energy per atom, HOMO-LUMO gap, vertical ionization potential, and electron affinity on their relative stabilities. The most stable planar cyclic conformations of these clusters always show at least a set of two carbon atoms between two beryllium atoms, while structures where beryllium atoms cluster together, or allow the intercalation of one carbon atom between two of them, generally seem to be the least stable ones. Clusters containing 1, 2, and 3 beryllium atoms (Be2C8, Be3C6, Be2C6, BeC6, Be2C4, BeC4, Be2C2, and BeC2) are identified as clusters of "magic numbers" in terms of their high binding energy per atom, high HOMO-LUMO gap, vertical ionization potential, and second difference in energy per beryllium atom.  相似文献   

5.
A combination of experiment and density functional theory was used to investigate the energetics of CO adsorption onto several small M(x)S(y)(+) (M = Mo, W; x/y = 2/6, 3/7, 5/7, 6/8) clusters as a probe of their atomic and electronic structure. Experimentally, tandem mass spectrometry was used to measure the relative yields of M(x)S(y)(+)(CO)(n) cluster adducts formed by collisions between a beam of mass-selected M(x)S(y)(+) cluster ions and CO molecules in a high-pressure collision cell (hexapole ion guide). The most probable M(x)S(y)(+)(CO)(n) adducts observed are those with n < or = x, that is, only one CO molecule bound to each metal site. The notable exception is the M(5)S(7)(+) cluster, for which the n = 6 adduct is found to have nearly the same intensity as the n = x = 5 adduct. Density functional calculations were used to search for the lowest energy structures of the bare M(x)S(y)(+) clusters and to obtain their relative stability for sequential CO binding. The calculated trends in CO binding energies were then compared to the experimental adduct distributions for assigning the ground-state structures. In this way, it was possible to distinguish between two nearly isoenergetic ground-state isomers for the M(2)S(6)(+) and M(3)S(7)(+) clusters, as only one isomer gave a calculated CO stabilization energy trend that was consistent with the experimental data. Similar comparisons of predicted and observed CO adsorption trends also provide evidence for assigning the ground-state structures of the M(5)S(7)(+) and M(6)S(8)(+) clusters. The latter contain metallic cores with most of the sulfur atoms bonded along the edges or in the faces of the metal core structure. The n = 6 and 7 adducts of M(5)S(7)(+) are predicted to be more stable than the n = x = 5 adduct, but only the n = 6 adduct is observed experimentally. The DFT calculations show that the n = 7 adduct undergoes internal bond breaking whereas the n = 6 framework is stable, albeit highly distorted. For the M(6)S(8)(+) cluster, the calculations predict that the two lowest energy isomers can bind more than six CO molecules without fragmentation; however, the apparent binding energy drops significantly for adducts with n > 6. In general, the ability of these small M(x)S(y)(+) clusters to bind more CO molecules than the number of metal atoms is a balance between the gain in CO adsorption energy versus the strain introduced into the cluster structure caused by CO crowding, the consequences of which can be fragmentation of the M(x)S(y)(+)(CO)(n) cluster adduct (n > x).  相似文献   

6.
The behaviors of the bimetal Mo-Mo doped cagelike silicon clusters Mo2Sin at the size of n=9-16 have been investigated systematically with the density functional approach. The growth-pattern behaviors, relative stabilities, and charge-transfer of these clusters are presented and discussed. The optimized geometries reveal that the dominant growth patterns of the bimetal Mo-Mo doped on opened cagelike silicon clusters (n=9-13) are based on pentagon prism MoSi10 and hexagonal prism MoSi12 clusters, while the Mo2 encapsulated Sin(n=14-16) frames are dominant growth behaviors for the large-sized clusters. The doped Mo2 dimer in the Sin frames is dissociated under the interactions of the Mo2 and Sin frames which are examined in term of the calculated Mo-Mo distance. The calculated fragmentation energies manifest that the remarkable local maximums of stable clusters are Mo2-doped Sin with n=10 and 12; the obtained relative stabilities exhibit that the Mo2-doped Si10 cluster is the most stable species in all different sized clusters. Natural population analysis shows that the charge-transfer phenomena appearing in the Mo2-doped Sin clusters are analogous to the single transition metal Re or W doped silicon clusters. In addition, the properties of frontier orbitals of Mo2-doped Sin (n=10 and 12) clusters show that the Mo2Si10 and Mo2Si12 isomers have enhanced chemical stabilities because of their larger HOMO-LUMO gaps. Interestingly, the geometry of the most stable Mo2Si9 cluster has the framework which is analogous to that of Ni2Ge9 cluster confirmed by recent experimental observation (Goicoechea, J. M.; Sevov, S. C. J. Am Chem. Soc. 2006, 128, 4155).  相似文献   

7.
以高能量密度的脉冲激光束在高真空中直接溅射银(金)粉与硫的混合物, 产生了丰富的银-硫和金-硫二元原子族正负离子, 记录了它们的飞行时间质谱。通过对这些簇离子的组成与分布的分析, 发现了它们的一些结构规律。银硫簇离子以离子键为主, Ag2S是它们的主要结构单元, 其中Ag11S5^+和Ag9S5^-特别稳定; 金硫簇离子基本上是共价结构, 金原子间相互成键, 构成簇离子的核, 硫原子则仅与核表面的金原子配位, 其中Ag6S14^+, Au5S6^-的稳定性比较突出。  相似文献   

8.
Density functional theory (DFT) computations have been carried out to study the structure and stability of MoSx clusters with the change of sulfur coverage at both Mo and S edges. DFT shows that adding sulfur to the Mo edge is always exothermic. However, deleting corner sulfur from the S edge is exothermic for 67 and 50% sulfur coverages, while deleting edge sulfur from the S edge is endothermic for 33 and 0% sulfur coverages. On the basis of the computed free energies along a wide range of H2S/H2 ratios, it is found that there are two stable structures with 33 and 50% sulfur coverages on the Mo edge by having 100% sulfur coverage on the S edge and one stable structure with 67% sulfur coverage on the S edge by having 0% sulfur coverage on the Mo edge. Under fully sulfiding atmosphere or at a very high H2S/H2 ratio, triangle MoSx structures with 100% sulfur coverage on the Mo edge are computed to be more stable than those with 100% sulfur coverage on the S edge, in agreement with the observation of scanning tunneling microscopy. In addition, the effects of cluster sizes on the surface structures are discussed.  相似文献   

9.
The geometric and electronic structures of both neutral and negatively charged lead sulfide clusters, (PbS)(n)/(PbS)(n)(-) (n = 2-10) were investigated in a combined anion photoelectron spectroscopy and computational study. Photoelectron spectra provided vertical detachment energies (VDEs) for the cluster anions and estimates of electron affinities (EA) for their neutral cluster counterparts, revealing a pattern of alternating EA and VDE values in which even n clusters exhibited lower EA and VDE values than odd n clusters up until n = 8. Computations found neutral lead sulfide clusters with even n to be thermodynamically more stable than their immediate (odd n) neighbors, with a consistent pattern also being found in their HOMO-LUMO gaps. Analysis of neutral cluster dissociation energies found the Pb(4)S(4) cube to be the preferred product of the queried fragmentation processes, consistent with our finding that the lead sulfide tetramer exhibits enhanced stability; it is a magic number species. Beyond n = 10, computational studies showed that neutral (PbS)(n) clusters in the size range, n = 11-15, prefer two-dimensional stacking of face-sharing lead sulfide cubical units, where lead and sulfur atoms possess a maximum of five-fold coordination. The preference for six-fold coordination, which is observed in the bulk, was not observed at these cluster sizes. Taken together, the results show a preference for the formation of slightly distorted, fused cuboids among small lead sulfide clusters.  相似文献   

10.
报道了用激光直接溅射法产生钪硫团簇, 并用串级飞行时间质谱仪研究了所产生的团簇离子的分布及紫外激光光解规律。钪硫二元团簇正负离子都是由周边硫原子包围团簇骨架而构成的, 骨架是由包含着不同数目的Sc2S3这样的组份单元组成, 它们结合紧密, 构成了稳定的钒硫团簇的核心。稳定的团簇正离子为ScS(Sc2S3)n^+和Sc2S2(Sc2S3)n^+。稳定的团簇负离子为ScS2(Sc2S3)n^-,S3(Sc2S3)n^-, (Sc2S3)n^-。周边硫原子数目随样品中硫的摩尔含量的增加而增多, 它们结合较弱, 易于剥离。在紫外光解时往往以失去S2, S4, S6的方式解离。通过分析认为具有组份单元的Sc对于S团簇的结构可能是一种笼状结构。  相似文献   

11.
Density-functional theory with generalized gradient approximation for the exchange-correlation potential has been used to calculate the structural and electronic structure of Si(n)C(n) (n=1-10) clusters. The geometries are found to undergo a structural change from two dimensional to three dimensional when the cluster size n equals 4. Cagelike structures are favored as the cluster size increases. A distinct segregation between the silicon and carbon atoms is observed for these clusters. It is found that the C atoms favor to form five-membered rings as the cluster size n increases. However, the growth motif for Si atoms is not observed. The Si(n)C(n) clusters at n=2, 6, and 9 are found to possess relatively higher stability. On the basis of the lowest-energy geometries obtained, the size dependence of cluster properties such as binding energy, HOMO-LUMO gap, Mulliken charge, vibrational spectrum, and ionization potential has been computed and analyzed. The bonding characteristics of the clusters are discussed.  相似文献   

12.
The basin-hopping algorithm combined with the Gupta many-body potential is used to study the structural and energetic properties of (KCs)(n) and (RbCs)(n) bimetallic clusters with N=2n up to 50 atoms. Each binary structure is compared to those of the pure clusters of the same size. For the cluster size N=28 and for the size range of N=34-50, the introduction of K and Rb atoms in the Cs alkali metal cluster results in new ground state structures different from those of the pure elements. In the size range N>/=38 the binary and pure clusters show not only structural differences, but they also display different magic numbers. Most of the magic Rb-Cs and K-Cs clusters possess highly symmetric structures. They belong to a family of pIh structures, where a fivefold pancake is a dominant structural motif. Such geometries have not been reported for alkali binary clusters so far, but have been found for series of binary transition metal clusters with large size mismatch. Moreover, tendency to phase separation (shell-like segregation) is predicted for both K-Cs and Rb-Cs clusters with up to 1000 atoms. Our finding of a surface segregation in Rb-Cs clusters is different from that of theoretical and experimental studies on bulk Rb-Cs alloys where phase separation does not occur.  相似文献   

13.
本文报道了具有局部松散配位的三核钼原子簇{Mo3(μ3-S)(μ-S)[S2P(OEt)2]4.P(C6H5)3}.(0.86CH2Cl2)的合成和晶体结构.在CAD-4四圆衍射仪上用Mo Kα射线收集到I≥2σ(I)的衍射点4840个.采用重原子法和差电子密度法解出结构,并用全矩阵最小二乘法修正,最终偏离因子为0.058.簇分子的Mo-Mo键为2.731(1),2.748(1),2.753(1)A,Mo原子和三苯基膦的P原子配位键长为Mo-P2.647(3)A,显著长于一般的Mo-P共价单键.三苯基膦基团在Mo的配位多面体中处于三重桥S原子的对位,表现出与其他此类簇合物的松散配位体配位位置不同.文中概括了此类簇合物的Mo-Mo键和Mo-L的成键情况.  相似文献   

14.
报道具有松散配位的三核钼簇合物{Mo3(μ3-S)(μ-S)3[S2P(OEt)2]4.L(L'=H2O,C3H3ON,和SbCl3在HCl-EtOH中加合反应及其产物{Mo3(μ3-S)[(μ-S)3.SbCl3].[S2P(OEt)2]4(C2H5OH)}(C2H5OH)和{Mo3(μ3-S)[(μ-S)3.SbCl3][S2P(OEt)2]3[SXP(OEt)2].(C3H3ON)}(X=S,O)的晶体结构。结构测定结果表明,这两个加合物的分子由{Mo3(μ3-S)(μ-S)3[S2P(OEt)2]4.L(L=C2H5OH,C3H3ON)通过三个(μ-S)联结SbCl3而成,从而获得了{Mo3SbS4}的类立方烷簇胳构型,Sb一S之间存在较弱的配位键, 由此推断,若加合的金属原子的轨道和电子组态适宜,有可能通过这种[3+1]的成簇模式获得四核的同核或异核簇合物。  相似文献   

15.
Some N(2)-fixing bacteria prolong the functionality of nitrogenase in molybdenum starvation by a special Mo storage protein (MoSto) that can store more than 100 Mo atoms. The presented 1.6 ? X-ray structure of MoSto from Azotobacter vinelandii reveals various discrete polyoxomolybdate clusters, three covalently and three noncovalently bound Mo(8), three Mo(5-7), and one Mo(3) clusters, and several low occupied, so far undefinable clusters, which are embedded in specific pockets inside a locked cage-shaped (αβ)(3) protein complex. The structurally identical Mo(8) clusters (three layers of two, four, and two MoO(n) octahedra) are distinguishable from the [Mo(8)O(26)](4-) cluster formed in acidic solutions by two displaced MoO(n) octahedra implicating three kinetically labile terminal ligands. Stabilization in the covalent Mo(8) cluster is achieved by Mo bonding to Hisα156-N(ε2) and Gluα129-O(ε1). The absence of covalent protein interactions in the noncovalent Mo(8) cluster is compensated by a more extended hydrogen-bond network involving three pronounced histidines. One displaced MoO(n) octahedron might serve as nucleation site for an inhomogeneous Mo(5-7) cluster largely surrounded by bulk solvent. In the Mo(3) cluster located on the 3-fold axis, the three accurately positioned His140-N(ε2) atoms of the α subunits coordinate to the Mo atoms. The formed polyoxomolybdate clusters of MoSto, not detectable in bulk solvent, are the result of an interplay between self- and protein-driven assembly processes that unite inorganic supramolecular and protein chemistry in a host-guest system. Template, nucleation/protection, and catalyst functions of the polypeptide as well as perspectives for designing new clusters are discussed.  相似文献   

16.
Laser evaporation of MoS(2) nanoflakes gives negatively charged magic number clusters of compositions Mo(13)S(25) and Mo(13)S(28), which are shown to have closed-cage structures. The clusters are stable and do not show fragmentation in the post-source decay analysis even at the highest laser powers. Computations suggest that Mo(13)S(25) has a central cavity with a diameter of 4.5 A. The nanosheets of MoS(2) could curl upon laser irradiation, explaining the cluster formation.  相似文献   

17.
We investigate the structures and magnetic properties of small Mn(n) clusters in the size range of 2-13 atoms using first-principles density functional theory. We arrive at the lowest energy structures for clusters in this size range by simultaneously optimizing the cluster geometries, total spins, and relative orientations of individual atomic moments. The results for the net magnetic moments for the optimal clusters are in good agreement with experiment. The magnetic behavior of Mn(n) clusters in the size range studied in this work ranges from ferromagnetic ordering (large net cluster moment) for the smallest (n=2, 3, and 4) clusters to a near degeneracy between ferromagnetic and antiferromagnetic solutions in the vicinity of n=5 and 6 to a clear preference for antiferromagnetic (small net cluster moment) ordering at n=7 and beyond. We study the details of this evolution and present a picture in which bonding in these clusters predominantly occurs due to a transfer of electrons from antibonding 4s levels to minority 3d levels.  相似文献   

18.
A study of the structure and the bonding nature of Mg clusters having 2 to 13 atoms has been made using the density functional molecular dynamics method within the local density approximation. The calculated lowest energy structures can be described in terms of a tetrahedron and a trigonal prism. Mg4 and Mg10 are magic clusters and Mg13 is neither an icosahedron nor a cuboctahedron. The bonding nature varies from atom to atom in a cluster and the transition from weakly bonded dimer to bulk like metallic behaviour is oscillatory and slow.  相似文献   

19.
The magic number silica clusters [(SiO(2))(n)O(2)H(3)](-) with n = 4 and 8 have been observed in the XeCl excimer laser (308 nm) ablation of various porous siliceous materials. The structural origin of the magic number clusters has been studied by the density functional theoretical calculation at the B3LYP/6-31G** level, with a genetic algorithm as a supplementary tool for global structure searching. The DFT results of the first magic number cluster are parallel to the corresponding Hartree-Fock results previously reported with only small differences in the structural parameters. Theoretical calculation predicts that the first magic number cluster (SiO(2))(4)O(2)H(4) and its anion [(SiO(2))(4)O(2)H(3)](-) will most probably take pseudotetrahedral cage-like structures. To study the structural properties of the second magic number cluster, geometries of the bare cluster (SiO(2))(8), the neutral complex cluster (SiO(2))(8)O(2)H(4), and the anionic cluster [(SiO(2))(8)O(2)H(3)](-) are fully optimized at the B3LYP/6-31G** level, and the corresponding vibrational frequencies are calculated. The DFT calculations predict that the ground state of the bare silica octamer (SiO(2))(8) has a linear chain structure, whereas the second magic number complex cluster (SiO(2))(8)O(2)H(4) and its anion [(SiO(2))(8)O(2)H(3)](-) are most probably a mixture of cubic cage-like structural isomers with an O atom inside the cage and several quasi-bicage isomers with high intercage interactions. The stabilization of these structures can also be attributed to the active participation of the group of atoms 2O and 4H (3H for the anion) in chemical bonding during cluster formation. Our theoretical calculation gives preliminary structural interpretation of the presence of the first and second magic number clusters and the absence of higher magic numbers.  相似文献   

20.
通过配基置换反应合成出两个新的三核钼簇合物[Mo3S4(DTC)4(DMF)](EtOH)(1)和[Mo3S4-(DTC)4(Py)](Py)2(H2O)(2). 用X射线衍射法测定了这两个簇合物的晶体结构.簇合物1的空间群为PT, 晶胞参数: A=10.624(5), b=11.373(2), c=19.216(5)埃;α=87.92(2), β=79.89(3), γ=69.44(3)°; Z=2. 簇合物2的空间群为PT, 晶胞参数:a=11.505(2), b=11.945(1), c=18.974(2)埃; α=99.18(1), β=94.82(1), γ=93.84(1)°; Z=2, 结构分析结果表明, 两个簇合物的簇胳均是{Mo3S4}^4^+的三核钼原子簇, 对簇合物中配基对Mo-Mo键的影响以及配基置换反应的规律性进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号