共查询到15条相似文献,搜索用时 62 毫秒
1.
近红外光谱结合化学计量学方法对癌症的辅助诊断已有了文献报道.该文测定了77例不同生理阶段的子官内膜组织病理切片的近红外光谱,对其分别进行多元散射校正(MSC)、正交信号校正(OSC)以及二者联用的预处理方法,采用拉丁配分法选择3/4样本作为训练集,1/4样本作测试集,建立支持向量机(SVM)模型进行分类,并与基于同样预... 相似文献
2.
基于支持向量机的近红外光谱鉴别茶叶的真伪 总被引:23,自引:0,他引:23
快速准确地鉴别名优茶的真伪是当前茶叶行业亟待解决的一项重大课题。针对这一现状,提出了一种快速准确鉴别名优茶真伪的新思路。试验中,以碧螺春茶为研究对象,利用近红外光谱分析技术结合支持向量机(SVM)模式识别原理建立碧螺春茶真伪鉴别模型。试验结果显示,通过标准归一化(SNV)预处理,选取6500~5500 cm-1波长范围内的光谱经过主成分分析后,提取11个主成分,选用径向基函数(RBF)作为核函数建立的模型最佳。对训练集中的138个茶叶样本,模型的回判鉴别率达到93.48%;对90个独立样本进行预测时,模型的预测鉴别率达到84.44%。研究结果表明基于支持向量机的近红外光谱鉴别名优茶真伪的方法是可行的。 相似文献
3.
基于近红外光谱与支持向量机的纸浆卡伯值在线测量 总被引:1,自引:0,他引:1
提出了用近红外光谱漫反射技术和支持向量机建模方法实现纸浆卡伯值在线测量的新方法。采集45份松木浆样品的近红外漫反射光谱,选择各样品15个振动吸收峰对应的吸收率,采用动态独立分量分析(DICA)对输入样本数据进行特征提取,建立基于支持向量机(SVM)的纸浆卡伯值预测模型。45份样品中选择35份组成校正集,另10份作为预测集对模型进行验证。基于支持向量机的纸浆卡伯值预测模型外部验证均方差和确定系数分别为0.26和0.93;基于线性回归的纸浆卡伯值预测模型外部验证均方差和确定系数分别为0.45和0.81。研究结果不仅表明纸浆卡伯值近红外测量方法的可行性和有效性,而且验证了基于支持向量机的纸浆卡伯值预测模型比线性回归模型具有更高的准确性和鲁棒性。 相似文献
4.
灰度关联分析是通过关联度的计算来理清系统中各因素之间的主次关系,找出影响较大的因素。简述了灰度关联分析的基本原理,并利用其对180个烟草样品的近红外谱进行了谱区优化,选取其中120个样品用于建模,另外60个样品用于模型检验。进一步利用偏最小二乘法和径向基支持向量机法分别建立了烟草样品的总糖、还原糖、烟碱及总氮的定量分析模型。结果表明,将灰度关联分析与支持向量机法联合用于烟草近红外光谱四个组分的定量分析,其模型的泛化能力和预测精度均有较明显的提高,从而能够有效地提高建模效率。 相似文献
5.
近红外光谱结合一类支持向量机算法检测鸡蛋的新鲜度 总被引:5,自引:0,他引:5
研究利用近红外光谱技术结合模式识别方法识别鸡蛋的新鲜度,在识别模型建立过程中,引入一类支持向量机(OC-SVM)算法解决新鲜蛋和非新鲜蛋训练样本数量不平衡问题。首先获取鸡蛋在10 000~4 000 cm-1范围内的近红外漫反射光谱,通过主成分分析方法提取光谱数据中的特征信息,优选了3个主成分作为模型的输入向量,然后采用OC-SVM区分新鲜蛋和非新鲜蛋。在模型建立过程中,对相关参数进行了优化,试验结果显示在相同条件下,OC-SVM模型识别结果较传统的支持向量机模型好。最优OC-SVM模型对新鲜蛋和非新鲜蛋的识别率均为80%,传统的支持向量机对新鲜度的识别率为100%,对非新鲜度的识别率却为0%。研究结果表明利用近红外光谱快速识别鸡蛋新鲜度方法是可行的;OC-SVM算法为训练样本数量不平衡提供了一种有效的解决方法。 相似文献
6.
提出出了一种基于近红外光谱分析技术快速无损测定苜蓿秋眠类型的新方法.应用近红外光谱漫反射技术测定苜蓿样本的光谱并对其进行主成分分析(PCA),根据主成分的累积贡献率选取前10个主成分建立支持向量机(SVM)分类模型,并对其参数及核函数类型进行了详细的分析和讨论.试验结果表明,当c=0.339 2,g=32时,测试集的预测准确率可达98.182%,可以作为初步测定苜蓿秋眠类型的手段之一.同时,与主成分回归分析、偏最小二乘法、BP神经网络、LVQ神经网络等方法相比较的结果表明,PCA-SVM模型可以有效地解决小样本问题,且可以避免陷入局部极小. 相似文献
7.
基于稀疏非负矩阵分解和支持向量机的海洋溢油近红外光谱鉴别分析 总被引:2,自引:0,他引:2
提出一种海洋溢油近红外光谱特征提取与种类鉴别新方法.海面溢油种类鉴别对现场应急处置方案的制定和可疑溢油源的追踪具有重要意义.采用傅里叶变换近红外光谱仪测定汽油、柴油、煤油三类模拟海洋溢油样本的近红外光谱,基于稀疏非负矩阵分解算法对光谱进行特征提取,采用五重交义检验,对210个样本进行训练,建立基于支持向量机的溢油光谱定... 相似文献
8.
子宫内膜癌是一种常见的妇科癌症。实验将Logistic回归作为一种建模方法引入到子宫内膜癌分类诊断模型中。77个样本通过主成分判别分析和支持向量机判别分析进行降维,应用拉丁配分方法选择训练集和测试集并确定Logistic回归模型参数。结果表明,Logistic回归模型不仅能够对样本进行正确的分类,而且能将样本的分类归属趋势与临床诊断结果很好的一致。主成分判别分析结合Logistic回归有望发展为一种近红外光谱检测癌症组织的新方法。 相似文献
9.
提出了一种基于近红外光谱分析技术和最小二乘支持向量机的鉴别方法,能够快速、无损鉴别聚丙烯酰胺的三种类型。获取非离子,阴离子和阳离子等三种类型的聚丙烯酰胺样本的近红外漫反射光谱,用主成分分析方法对样本光谱数据进行降维,并提取主成分。基于前三个主成分对三种类型的聚丙烯酰胺样本进行聚类分析,并将主成分作为最小二乘支持向量机的输入。通过基于网格搜索的交叉验证方式优化最小二乘支持向量机的参数和作为其输入的主成分个数。每种类型聚丙烯酰胺各采集60个样本,共采集180个样本,每种类型样本随机选取45个样本,共135样本作为训练样本集,剩余45个样本作为测试集。为了验证该方法能否鉴别掺假样本,制备了掺入不同比例非离子聚丙烯酰胺的5个阴离子和5个阳离子聚丙烯酰胺样本。采用基于训练样本集交叉验证预测误差的F统计显著性检验方法来确定样本的鉴别结果误差阈值。结果表明,预测测试集时,准确率为100%。预测10个混和样本时,所有混合样本都被准确识别出。说明该方法能快速无损鉴别不同类型的聚丙烯酰胺并且具有掺假鉴别能力,为聚丙烯酰胺类型的快速鉴别提供了一种新方法。 相似文献
10.
烟草是一种成分复杂的天然植物,地理位置、生长条件等外界因素直接影响着烟叶的品质;我国烟叶种植范围十分广泛,每个产区种植的烟叶都有其独特的风格特征,不同产区的烟叶配比对卷烟的质量起着决定性的作用。为实现烟叶产地准确、快速判别,基于近红外光谱(NIRS),采用灰狼算法(GWO)优化的支持向量机(SVM)算法实现烟叶产地鉴别分类。以8个产地的824个烟叶样本为研究对象,基于x-y距离样本集划分(SPXY)方法得到校正集617个和验证集207个样品。首先应用最佳波长筛选方法,如竞争自适应加权采样(CARS)和随机青蛙(RF)算法减少光谱冗余信息,最终从1 609个变量中分别获得141和534个与产地相关的重要变量,并以此输入SVM作为建模数据,接下来在相同搜索范围内比较了粒子群优化算法(PSO)、遗传算法(GA)和GWO对SVM分类模型的优化效果。结果表明,经RF筛选后的光谱变量较CARS具有更好的产地建模性能,其中RF-GWO-SVM对8个产地烟叶的整体判别正确率达到了96.62%,相较于RF-PSO-SVM和RF-GA-SVM正确率更高。同时,RF-GWO-SVM的运行时间分别比RF-PS... 相似文献
11.
针对近红外(Near Infrared,NIR)光谱测量中的小样本问题。本文提出了一种集成最小二乘支持向量机(Ensemble Least Squares Support Vector Machine,ELS-SVM)新算法。首先使用随机子空间算法(Random Subspace Method,RSM)原始高维变量空间划分为若干个低维度的子空间,然后分别在各个子空间建立最小二乘支持向量机(LS-SVM)模型,最后构造一个集成结果来进行预测。针对一批柴油样本的实验结果表明,本法对柴油十六烷值的预测精度优于传统的LS-SVM方法。 相似文献
12.
采用支持向量机(support vector machine,SVM)建立了鱼糜样品中水分和蛋白质含量的近红外光谱校正模型,并采用独立样本集进行了预测。光谱数据经间隔两点一阶导数(DB1G2)、标准正态变换(SNV)、多元散射校正(MSC)相结合的方法预处理后,用偏最小二乘(PLS)降维处理,取前15个投影变量为自变量。获得水分模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP; 蛋白质模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP,有较好的预测准确性。基于SVM算法的近红外光谱技术可用于鱼糜水分和蛋白质含量的快速检测。 相似文献
13.
近红外(NIR)定量分析通常涉及多个组分,采用遗传算法和自适应建模策略,建立了能够对多组分同时定量的多目标最小二乘支持向量机(LS-SVM),并将其应用于玉米中四个组分和连翘中两个活性成分的NIR分析。结果表明多目标遗传算法配合自适应建模策略可保证优化收敛于全局最优解。所建玉米多目标LS-SVM模型明显优于PLS1和PLS2模型;连翘多目标LS-SVM模型与PLS模型均可取得较好的校正和预测效果。两组数据中,径向基神经网络(RBFNN)模型均出现过拟合现象。多目标LS-SVM和单目标LS-SVM性能相近,但多目标LS-SVM建模运行一次即可得到结果,在NIR多组分定量分析中具有潜在应用优势。 相似文献
14.
基于近红外光漫反射谱技术的检测分析具有简单,快捷,安全等优势而被广泛应用于各行各业。应用近红外光谱分析技术实现不同煤种的快速分类,该方法可以替代费时费力费财的传统化学分析方法。同时首次将置信学习机(confidence machine)引入近红外分析中,实现了对分析结果的风险评估。采集了来自不同矿区共四种不同煤种(肥煤,焦煤,瘦煤和贫瘦煤)的199个煤样本的近红外光谱,通过机器学习的方法针对煤的近红外光谱构建了煤种分类器来实现煤种的快速分类。在近红外分析中引入了置信学习机的分析方式,结合支持向量机(SVM),构建了离线和在线的CM-SVM分类器。置信学习机是一种概率方法,使用概率(CM-SVM)来取代分类超平面(SVM)进行分类,不仅分类效果好于传统的SVM,达到了95.48%的分类率,还能同时给出每个样本分类结果的置信度,可靠度等风险信息。另外,CM-SVM通过对置信水平的设定,得到不同置信度下预测区间,该区间的预测正确率是与置信水平严格对应的,对于产品质量控制有非常重要的意义。置信学习机同时是一种在线的学习模型,新样本的不断加入会提高模型的性能,非常适合于工业现场的在线分析。在线的CM-SVM模型随着样本数的增加,预测结果的置信度有所提高,对工业现场近红外分析有重要意义。 相似文献