首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and photoluminescence characteristics of doped ZnS nanoparticles   总被引:3,自引:0,他引:3  
Free-standing powders of doped ZnS nanoparticles have been synthesized by using a chemical co-precipitation of Zn2+, Mn2+, Cu2+ and Cd2+ with sulfur ions in aqueous solution. X-ray diffraction analysis shows that the diameter of the particles is ∼2–3 nm. The unique luminescence properties, such as the strength (its intensity is about 12 times that of ZnS nanoparticles) and stability of the visible-light emission, were observed from ZnS nanoparticles co-doped with Cu2+ and Mn2+. The nanoparticles could be doped with copper and manganese during the synthesis without altering the X-ray diffraction pattern. However, doping shifts the luminescence to 520–540 nm in the case of co-doping with Cu2+ and Mn2+. Doping also results in a blue shift on the excitation wavelength. In Cd2+-doped ZnS nanometer-scale particles, the fluorescence spectra show a red shift in the emission wavelength (ranging from 450 nm to 620 nm). Also a relatively broad emission (ranging from blue to yellow) has been observed. The results strongly suggest that doped ZnS nanocrystals, especially two kinds of transition metal-activated ZnS nanoparticles, form a new class of luminescent materials. Received: 16 October 2000 / Accepted: 17 October 2000 / Published online: 23 May 2001  相似文献   

2.
Honeycomb-like alignments of carbon nanotubes were prepared by pyrolysis of a metal phthalocyanine at 950 °C in an Ar/H2 flow. A simple synthetic method has been developed for a large-scale synthesis of aligned carbon nanotubes normal to a substrate surface. Received: 15 June 2000 / Accepted: 21 June 2000 / Published online: 2 August 2000  相似文献   

3.
4.
2 + Na2S → CdS + 2NaCl induced by mechanical milling resulted in the formation of CdS particles with an average diameter of < 8 nm. The average particle size was controlled within the range of 4 to 8 nm by varying the size of the grinding media. The onset energy of optical absorption showed a blue shift with decreasing particle size. Received: 29 August 1997/Accepted: 25 September 1997  相似文献   

5.
Mechanisms proposed in the literature are compared with a current scenario for the formation of single-wall carbon nanotubes in the laser-ablation process that is based on our spectral emission and laser-induced fluorescence measurements. It is suggested that the carbon which serves as feedstock for nanotube formation not only comes from the direct ablation of the target, but also from carbon particles suspended in the reaction zone. Fullerenes formed in the reaction zone may be photo-dissociated into C2 and other low molecular weight species, and also may serve as feedstock for nanotube growth. Confinement of the nanotubes in the reaction zone within the laser beam allows the nanotubes to be ‘purified’ and annealed during the formation process by laser heating. Received: 2 November 2000 / Accepted: 3 November 2000 / Published online: 23 March 2001  相似文献   

6.
Iron-containing nanoparticles were made by laser-assisted (ArF excimer laser, λ=193 nm) photolytic dissociation of ferrocene (Fe(C5H5)2 or FeCp2) in argon and an oxygen/argon gas mixture. The particle-size distributions were obtained on-line by using differential mobility analysers (DMAs) and were found to be log-normal with a geometric standard deviation of 1.85. In argon, particle sizes between 3 and 100 nm were generated. The volumes of these particles were found to increase linearly with the increased repetition rate, fluence and beam size of the laser. These observations are explained on the basis of the residence-time approach model. Received: 23 November 1999 / Accepted: 19 September 2000 / Published online: 22 November 2000  相似文献   

7.
Silver colloids in aqueous solution were studied by different scanning microscopy techniques and UV/VIS spectroscopy. The silver colloids were produced either by chemical reduction or by nanosecond laser ablation from a solid silver foil in water. Variation of laser power and ablation time leads to solutions of metal clusters of different sizes in water. We characterized the electronic absorption of the clusters by UV/VIS spectroscopy. STM (scanning tunneling microscope) imaging of the metal colloids shows atomic resolution of rod- or tenon-like silver clusters up to 10-nm length formed by laser ablation. Our scanning electron microscope measurements, however, show that much larger silver colloids up to 5-μm length are also formed, which are not visible in the STM due to their roughness. We correlate them with the long-wavelength tail of the multimodal UV/VIS spectrum. The silver colloids obtained by chemical reduction are generally larger and their electronic spectra are red-shifted compared to the laser-ablated clusters. Irradiation of the colloid solution with nanosecond laser pulses of appropriate fluence at 532 nm and 355 nm initially reduced the colloid size. Longer irradiation at 355 nm, however, leads to the formation of larger colloids again. There seems to be a critical lower particle size, where silver clusters in aqueous solution become unstable and start to coagulate. Received: 24 June 2002 / Revised version: 25 July 2002 / Published online: 25 October 2002 RID="*" ID="*"This work is part of the thesis of H. M?ltgen RID="**" ID="**"Corresponding author. Fax: +49-211/811-5195, E-mail: kleinermanns@uni-duesseldorf.de  相似文献   

8.
Self-assembled Monolayers of calix[4]resorcinarene receptor molecules on Au(111) were studied by UHV scanning tunneling microscopy and X-ray photoelectron spectroscopy. Highly ordered monolayers were observed with domains oriented at an angle of 60° relative to each other. Molecularly resolved images were investigated and lattice constants found which depended on the preparation solvent. The STM images of two samples, one prepared in 1 mM chloroform/ethyl alcohol adsorbate solution and one in 1 mM hexane adsorbate solution are consistent with having a ×2 and 4×2 lattice, respectively. Received: 22 September 1999 / Accepted: 28 March 2000 / Published online: 11 May 2000  相似文献   

9.
Aluminum films with thicknesses ranging from 1 nm to 12 nm have been sputtered on 20 nm thick Co layers. The properties of the Co/Al bilayers were studied by X-ray photoemission spectroscopy (XPS) and spin-echo nuclear magnetic resonance (NMR). Both methods show independently that a 1 nm Al film covers the Co surface completely. XPS and NMR also showed that layers thicker than 1 nm Al are not oxidized completely in ambient air. Similarities to and deviations from niobium with Al overlayers (Nb/Al) are described. Prerequisites for the fabrication of tunneling magnetoresistance devices based on Co or NiFe ferromagnets and an aluminum oxide barrier are discussed. Received: 7 July 1999 / Accepted: 11 November 1999 / Published online: 8 March 2000  相似文献   

10.
2 bonds attests for the presence of ordered BN domains and of carbon domains; (ii) the elemental profiles show that BN layers and carbon layers are immiscible with a radial organisation into two to five domains; and (iii) the sets of layers at free surfaces – including the inner surfaces of tubes – are always made of carbon. The origin of this chemical organisation, which is most likely obtained during the growth, is discussed. For the hafnium-boride metallic particles coated by C/BN envelopes, a model based on the solidification from the outside to the inside of isolated liquid-like droplets is proposed: the carbon phase solidifies first according to theoretical phase diagrams, and forms the outer shells. For the tubes, a directional eutectic solidification process is shown to account for the observed C/BN/C sequence, in a vapour–liquid–solid scheme, with an hafnium-rich liquid-like particle at the tip of the tube. Received: 26 November 1998 / Accepted: 14 January 1999  相似文献   

11.
High-yield synthesis of amorphous silicon oxide nanoropes (SiONRs) was achieved by using simple evaporation and oxidation of Si. Transmission electron microscopy observations show that the amorphous SiONRs have a length of up to several hundreds of micrometers and a diameter of 20 to 40 nm. Energy-dispersive X-ray analysis reveals that the SiONRs consist of Si and O elements in an atomic ratio of approximately 1:1.2. The formation process of the SiONRs is closely related to a vapor–solid method. The SiONRs emit blue light at energies of 2.53 and 3.0 eV. Received: 2 January 2002 / Accepted: 7 January 2002 / Published online: 20 March 2002  相似文献   

12.
The development of modern spectroscopy is summarized from Bunsen’s detection of atoms as the beginning of spectral analysis to modern molecular spectroscopies including new high resolution techniques for molecular ions. Recent experiments involving long range charge migration in peptides and proteins are outlined. Received: 2 October 2000 / Published online: 11 October 2000  相似文献   

13.
The spinel NiCo2O4 nanofibers with diameters of 50-100 nm were prepared by high temperature calcinations of a simple inorganic-polymer composite fibers, which were obtained by electrospinning of the PVA/cobalt acetate/nickel acetate composite precursor. The crystallinity, purity, and surface morphology of the as-prepared NiCo2O4 nanofibers were investigated by XRD, FT-IR, SEM, respectively.  相似文献   

14.
Local-oriented single-crystalline ZnO nanowires have been synthesized in large scale by a simple microemulsion method in the presence of sulfonate-polystyrene (S-PS) and dodecyl benzene sulfonic acid sodium salt (DBS). The as-prepared product is characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), infrared (IR) spectra and photoluminescence (PL) spectrum. The nanowires exhibit a local congregation and preferentially grow along the [0 0 2] facet. FT-IR spectrum indicates that S-PS is adsorbed on the surface of ZnO nanowires. The PL spectrum shows evidently red-shifted ultraviolet (UV) emission.  相似文献   

15.
80 , Ca/Sr/Ba@C82, Ca/Sr/Ba@C84) are investigated for the first time by UV-Vis-NIR absorption spectroscopy and high-resolution 13C NMR. Direct evidence of the endohedral nature and cage structures are revealed by these measurements. Furthermore, we have found that each metallofullerene has 2–4 structural isomers, which have been isolated by multistage high-performance liquid chromatography. These isomers have different cage structures and give characteristic UV-Vis-NIR absorption spectra. Received: 22 September 1997/Accepted: 16 October 1997  相似文献   

16.
We discuss the dependence of the color of low-concentrated nanoparticle systems on particle size and mass concentration for Ag, Au and TiN nanoparticles, which exhibit a surface plasmon polariton resonance in extinction spectra. Comparison is made with color data obtained for Ag and Au colloidal suspensions. When particles lump into aggregates, the splitting of the surface plasmon resonance into new resonances affects the extinction of light and, hence, the color of the particle assembly. This is demonstrated for aggregated colloidal suspensions of Ag and Au nanoparticles. Finally, for highly concentrated assemblies such as pigment films, we discuss the dependence of the color in diffuse reflectance and transmittance according to Kubelka and Munk (P. Kubelka, F. Munk: Z. Techn. Phys. 12, 593 (1931)), and extend this model by using optical properties of aggregates of spheres. Received: 2 July 2001 / Published online: 10 October 2001  相似文献   

17.
When examined under a high-resolution transmission microscope (HRTEM), highly oriented pyrolitic graphite (HOPG), after ultrasound treatment, is found to contain some bent graphitic sheets. These bent structures are ordered graphitic sheets, which have specific bend angles that are a multiple of 30° (from 30° to 180°). We speculate that the creation and variation of bend angles is a result of interplay between the conformation of sp3-like defects and the ultrasound wave impact. Received 8 September 2000 / Accepted: 6 November 2000 / Published online: 23 May 2001  相似文献   

18.
Large quantities of high-purity crystalline β-SiC nanowires have been synthesized at relatively low temperature via a new simple method, the chemical-vapor-reaction approach, in a home-made graphite reaction cell. A mixture of milled Si and SiC powders and C3H6 were employed as the starting materials. The results show that the nanowires with diameters of about 10–35 nm are single crystalline β-SiCwithout any wrapping of amorphous material, and the nanowire axes lie along the 〈111〉 direction. Some unique properties are found in the Raman scattering from the β-SiC nanowires, which are different from previous observations of β-SiC materials. A possible growth mechanism for the β-SiC nanowires is proposed. Received: 27 August 2002 / Accepted: 28 August 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-29/8491-000, E-mail: zjli-sohu@sohu.com  相似文献   

19.
Physical vapor deposition techniques such as sputtering and laser ablation – which are very commonly used in thin film technology – appear to hold much promise for the synthesis of nanocrystalline thin films as well as loosely aggregated nanoparticles. We present a systematic study of the process parameters that facilitate the growth of nanocrystalline metals and oxides. The systems studied include TiO2, ZnO, γ-Al2O3, Cu2O, Ag and Cu. The mean particle size and crystallographic orientation are influenced mainly by the sputtering power, the substrate temperature and the nature, pressure and flow rate of the sputtering gas. In general, nanocrystalline thin films were formed at or close to 300 K, while loosely adhering nanoparticles were deposited at lower temperatures. Received: 31 October 2000 / Accepted: 9 January 2001 / Published online: 26 April 2001  相似文献   

20.
6 to 1012 molecules cm-3. FMRS has the potential of being a general method for monitoring atmospheric trace gases at ambient levels. Received: 23 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号