首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of lithium perfluorononanoate (LiPFN) with poly(ethylene glycol) (PEG) molecules of different molecular weights (300 < MW < 20000 Da) has been investigated in water at 298.15 and 308.15 K by isothermal titration calorimetry (ITC). Density, viscosity, and conductivity measurements were also performed at 298.15 K. The aggregation process of this surfactant on the PEG polymeric chain was found to be very similar to that exhibited by cesium perfluorooctanoate (CsPFO) and appears to be consistent with the necklace model. ITC titrations indicated that a fully formed LiPFN micellar cluster can be wrapped by a PEG chain having a molecular weight (MW) of approximately 3200 Da, longer than that required by the shorter perfluorooctanoate (MW approximately 2600 Da), and also suggested a stepwise mechanism for the aggregation of successive micelles. Viscosity data indicate that the formation of polymer-surfactant complexes between PEG and LiPFN involves a conformational change of the polymer. The aggregation of preformed micelles of LiPFN or CsPFO or SDS on the PEG polymeric chain always gives rise to further stabilization.  相似文献   

2.
The interaction between polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) after the procedure of addition of the surfactant to polymer and the reverse procedure of addition of polymer to SDS micelles has been studied by tensiometric, conductometric, and microcalorimetric methods. The results have been analyzed and correlated with reference to SDS interfacial adsorption, association, and binding to PVP. Two aggregation states of SDS in presence of PVP have been found. The enthalpies of formation of SDS aggregates/micelles and their binding to the polymer have been evaluated. The interaction of PVP with SDS at concentrations below its critical micellar concentration (CMC) and above have evidenced distinctions. The forward addition protocol (FAP, SDS addition to PVP) and reverse addition protocol (RAP, PVP addition to SDS) have shown similarities and differences. Electrokinetic measurements have evidenced the interacted (SDS–PVP) colloidal products to possess negative zeta potential in the range of −39 to −65 mV. The hydrodynamic diameters of the PVP–SDS dispersion obtained from DLS measurements have ranged between 60 and 160 nm. Both zeta potential and hydrodynamic diameter have depended on [SDS] showing a maximum for the former at twice the critical micellar concentration of SDS.  相似文献   

3.
Solid solutions Li2x Zn2-3xTi1+xO4, where x =1/3, 1/2, 3/5, 2/3, were studied by powder X-ray diffractometry and differential thermal analysis. Conductivity measurements have been performed in the gas phase at different temperatures and oxygen pressures. Distribution of cations over the sites of the spinel structure has been determined. Conductivity increases substantially with lithium concentration. The high lithium conductivity of Li3Zn0.5Ti4O10 (x=3/5) and Li4Ti5O12 (x=2/3) is the result of two sequential phase transitions associated with different lithium distributions in high-temperature phases with defective NaCl type structures. Possible routes of lithium ion transport are discussed and rationalized based on the conductivity and crystal data.  相似文献   

4.
Cationic micelles of cetyltrimethylammonium bromide, CTABr, speed attack of hydroxide ion upon coumarin by a factor of c.a-2, due to a concentration effect. The first-order rate constants, kobs, at a given hydroxide ions concentration go through maxima with increasing surfactant concentration. The overall micellar effects in these cationic micelles can be treated in terms of the pseudo-phase ion exchange model. Analysis of the data shows that second-order rate constant at the micellar surface is smaller than the second-order rate constant in water. Anionic micelles of sodium dodecyi sulfate, SDS, inhibit the same reaction. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 273–276, 1998.  相似文献   

5.
Anion binding to nonionic micelles was quantified by self-diffusion. Four anions were probed by multinuclear PGSTE NMR measurements in a Triton X-100 micellar aqueous solution. The salt concentration used was sufficiently low to avoid any micellar growth affecting surface curvature. The micellar aggregates that provide a model surface are uncharged with hydrophilic headgroups so that electrostatic ion surface interactions play little or no role in prescribing specific anion binding. Anionic affinity to the micellar surface followed a Hofmeister series, (CH(3))(2)AsO(2)(-) ? CH(3)COO(-) > H(2)PO(4)(-) > F(-). The observed ion specificity is rationalized by calling into play the nonelectrostatic interactions occurring between the anions and the micellar surface.  相似文献   

6.
The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene)(E39B18) with anionic surfactant sodium dodecyl sulphate(SDS) and cationic surfactant hexadecyltrimethylammonium bromide(CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration(CMC) and thereby the free energy of micellization(△Gmic),free energy of adsorption(△Gads),surface excess concentration(Γ) and minimum area per molecule(A).Conductivity measurements were used to determine the critical micelle concentration(CMC),critical aggregation concentration(CAC),polymer saturation point(PSP),degree of ionization(α) and counter ion binding(β). Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks(I1/I3) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number(N),number of binding sites(n) and free energy of binding (△Gb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.  相似文献   

7.
Single and mixed micelle formation by sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) and their mixtures in pure water and in the presence of water-soluble polymers such as Synperonic 85 (triblock polymer, TBP), hydroxypropylcellulose (HPC), and carboxymethylcellulose sodium salt (CMC) were studied with the help of conductivity, pyrene fluorescence, cyclic voltammetry, and viscosity measurements. Conductivity measurements showed a single aggregation process for pure surfactants and their mixtures both in pure water as well as in the presence of water-soluble polymers. Triple breaks corresponding to two aggregation processes for SDS, SDBS, and their mixture in the presence of TBP were observed from fluorescence measurements. The first one demonstrated the critical aggregation process due to the adsorption of surfactant monomers on TBP macromolecule. The second one was attributed to the participation of surfactant–polymer aggregates formed at the first one, in the micelle formation process. The aggregation number ( N agg) of single and mixed micelles and diffusion coefficient ( D) of electroactive probe were computed from the fluorescence and cyclic voltammetry measurements, respectively. Both parameters, along with the viscosity results, indicated stronger SDS–polymer interactions in comparison to SDBS–polymer interactions. Mixed surfactant–polymer interactions showed compensating effects of both pure surfactants. The nature of mixed micelles was found to be ideal in all cases, as evaluated by applying the regular solution and Motomura's approximations.  相似文献   

8.
Electrical conductance measurements are reported for lithium perchlorate andthe anion receptor tetra(trifluoromethylsulfonyl)-1,4,8,11-tetraazocyclotetradecane(TTCD) in different aprotic solvents (propylene carbonate, nitromethane,acetonitrile, and tetrahydrofuran). The data have been analyzed by a suitablemethod based on the Lee-Wheaton theory on mixed electrolytes in order to obtainthe true thermodynamic formation constants of macrocyclic-anion complexes andthe ion pairs of both the uncomplexed (ClO4 )and complexed (TTCD-ClO4 )anions. The results show that the anion-ligand formation constants increase withdecreasing dielectric constant and that the presence of the ligand increases theionization of lithium perchlorate and enhances the transference number of lithiumion. These findings are of particular interest in view of the technologicalapplication of anion receptors in electrolyte solutions for lithium batteries.  相似文献   

9.
Precise conductance measurements have been performed for lithium perchlorate, lithium tetrafluoroborate, lithium hexafluoroarsenate, sodium perchlorate, and sodium tetraphenylborate in 2-methoxyethanol–water mixtures at four different mole fractions, i.e., 0.056, 0.136, 0.262, and 0.486 of 2-methoxyethanol (69.73 D 26.55) at 25°C in the concentration range 0.0004–0.0642 mol-dm–3. The limiting molar conductivity °, the association constant K A, and the association distance R for the solvent mixtures have been evaluated from the conductance concentration data using the 1978 Fuoss conductance equation. The single-ion conductances have been estimated using the reference electrolyte tetrabutylam-monium tetraphynylborate(Bu4NBPh4). The analysis of the data indicates that for most salts ion association is appreciable in the solvent mixtures with a mole fraction of the cosolvent of 0.262 or higher. The results have been interpreted in terms of ion-solvent interactions and structural changes in the mixed solvent media.  相似文献   

10.
The reaction methyl 4‐nitrobenzenesulfonate + Cl? was studied in hexadecyltrimethylammonium chloride (CTAC) in the absence and presence of 0.1 M NaCl, as well as in mixed CTAC/Triton X‐100 (polyoxyethylene(9.5)octylphenyl ether) aqueous micellar solutions with CTAC molar fractions of 0.9, 0.8, 0.7, and 0.6. Conductivity measurements were used to obtain critical micellar concentrations and micellar ionization degrees of the various micellar reaction media. From these data, thermodynamic information on the cationic/nonionic mixed micellar solutions was obtained. Micellar effects on the observed rate constant were explained by pseudophase kinetic models. The estimated second‐order rate constants in the micellar pseudophase of the different micellar reaction media showed that pure CTAC and mixed CTAC/Triton X‐100 micelles, at the high cationic surfactant molar fractions studied, provide reaction sites of similar characteristics at the interfacial region. This was in agreement with previous structural studies carried out on mixed CTAC/Triton X‐100 micellar solutions. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 45–51, 2003  相似文献   

11.
Cationic micelles of alkyltrimethylammonium chloride and bromide (alkyl = n? C12H25, n? C14H29, and n? C16H33) catalyze and anionic micelles of sodium dodecyl sulfate inhibit the reaction of hydroxide ion with 2-phenoxyquinoxaline (1). Inert anions such as chloride, nitrate, mesylate, and n-butanosulfonate inhibit the reaction in CTABr by competing with OH? at the micellar surface. The overall micellar effects on rate in cationic micelles and dilute electrolyte can be treated quantitatively in terms of the pseudo-phase ion-exchange model. The determined second-order rate constants in the micellar pseudo-phase are smaller than the second-order constants in water. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
 The conductances of trimethyltetradecylammonium bromide (TTAB) + trimethylhexa decylammonium bromide (HTAB) and TTAB + trimethyldodecylammonium bromide (DTAB) mixtures over the entire mole fraction range were measured in aqueous poly(vinyl pyrrolidone) (PVP) containing 1–10 wt% PVP at 30 °C. Each conductivity (κ) curve for the TTAB + HTAB mixtures showed two breaks corresponding to two aggregation processes over the whole mole fraction range, except in the case of pure TTAB, where a single break corresponding to the conventional critical micelle concentration (cmc) was observed. In the case of TTAB + DTAB mixtures, each κ curve at a particular mole fraction of TTAB showed only one break, which was quite close to a similar one in pure water. In TTAB + HTAB mixtures, the first break is called the critical aggregation concentration. It is close to the conventional cmc and is attributed to the polymer-free micelle formation, whereas the second break is due to the polymer-bound micellar aggregates. However, no polymer-bound micellar aggregation process was observed in the case of TTAB + DTAB mixtures. Therefore, the presence of micelle–PVP interactions in the TTAB + HTAB case have been attributed to the stronger hydrophobicity of HTAB or TTAB + HTAB micelles in comparison to that of single or mixed micelles of TTAB + DTAB mixtures. From the conductivity data, various micelle parameters in the presence of PVP have been computed and discussed in terms of micelle–polymer interactions. The mixing behavior of TTAB +  HTAB corresponding to the first break, and that of TTAB + DTAB mixtures in the presence of PVP, is close to ideal and is also identical to that in pure water. Received: 26 August 1999 Accepted: 6 November 1999  相似文献   

13.
The interactions of sodium dodecyl sulfate (SDS) with the triblock copolymer L64 (EO13-PO30-EO13) and hexaethylene glycol mono-n-dodecyl ether (C12EO6) were studied using electromotive force, isothermal titration microcalorimetry, differential scanning microcalorimetry, and surface tension measurements. In certain regions of binding, mixed micelles are formed, and here we could evaluate an interaction parameter using regular solution theory. The mixed micelles of L64 with both SDS and C12EO6 exhibit synergy. When L64 is present in its nonassociated state, it forms polymer/micellar SDS complexes at SDS concentrations above the critical aggregation concentration (cac). The cac is well below the critical micellar concentration (cmc) of pure SDS, and a model suggesting how bound micelles are formed at the cac in the presence of a polymer is described. The interaction of nonassociated L64 with C12EO6 is a very rare example of strong binding between a nonionic surfactant and a nonionic polymer, and C12EO6/L64 mixed micelles are formed. We also carried out small angle neutron scattering measurement to determine the structure of the monomeric polymer/micellar SDS complex, as well as the mixed L64/C12EO6 aggregates. In these experiments, contrast matching was achieved by using the h and d forms of SDS, as well as C12EO6. During the early stages of the formation of polymer-bound SDS micelles, SDS aggregates with aggregation numbers of approximately 20 were found and such complexes contain 4-6 bound L64 monomers. The L64/C12EO6 data confirmed the existence of mixed micelles, and structural information involving the composition of the mixed micelle and the aggregation numbers were evaluated.  相似文献   

14.
The shape, size, aggregation, hydration, and correlation times of water insoluble PEO‐PPO‐PEO triblock copolymer micelles with sodium dodecylsulfate (SDS) micelles were investigated using transport studies and dynamic light scattering technique. From the conductance of micellar solutions of the polymer in 25 mM SDS and 5 mM NaCl, the hydration of polymer micelles were determined using the principle of obstruction of electrolyte migration by the polymer. The asymmetry of the micellar particles of polymer and polymer‐SDS mixed micellar systems in 5 mM NaCl and their average axial ratios were calculated using intrinsic viscosity and hydration data obeying Simha–Einstein equation. Hydration number and micellar sizes were variable with temperature. The shape of the polymer micelles has been ellipsoidal rather than spherical. The micellar volume, hydrodynamic radius, radius of gyration, diffusional coefficients as well as translational, rotational and effective correlation times have been calculated from the absolute values of the axes. The partial molal volume of polymer micelles has also been determined and its comparison with the molar volume of pure polymer suggested a volume contraction due to immobilization of the water phase by the hydrophilic head groups of the polymer. The thermodynamic activation parameters for viscous flow favor a more ordered water structure around polymer micelles at higher temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2410–2420, 2007  相似文献   

15.
Solvation interaction and ion association in solutions of lithium perchlorate/4-methoxymethyl-ethylene carbonate (MEC) have been studied by using Infrared and Raman spectra as a function of concentration of lithium perchlorate. The splitting of ring deformation band and ring ether asymmetric stretching band, and the change of carbonyl stretching band suggest that there should be a strong interaction between Li^+ and the solvent molecules, and the site of solvation should be the oxygen atom of carbonyl group. The apparent solvation number of Li^+ was calculated by using band fitting technique. The solvation number was decreased from 3.3 to 1.1 with increasing the concentration of LiClO4/MEC solutions. On the other hand, the band fitting for the ClO4^- band revealed the presence of contact ion pair, and free ClO4^- anion in the concentrated solutions.  相似文献   

16.
The binding of two antitoxoplasmosis drugs, pyrimethamine (PYR) and sulfadiazine (SDZ) to cationic cetyltrimethylammonium chloride (CTAC), anionic sodium dodecylsulfate (SDS), zwiterionic N-hexadecyl-N,N-dimethyl-2-ammonium-1-propanesulfonate (HPS) and neutral polyoxyethylene-dodecyl-ether (Brij-35®) micelles was studied using absorption and fluorescence spectroscopic methods. The pKa of PYR changed in the presence of charged anionic, cationic and zwiterionic micelles, indicating that interaction is influenced by the micellar charge. For SDZ, pKa changes were lower than 1 for all micelles, suggesting the occurrence of low binding constants in addition to a reasonable influence of the micellar charge. The values of binding constants Kb, obtained from fluorescence measurements, for PYR to CTAC micelles were very low at pH 4.0, where the drug is in a complete protonated state, increasing at pH 9.0 to long-chained CTAC and HPS micelles since this factor also favors accomodation of the neutral drug in the hydrophobic compartments. For SDZ the binding constants were determined from optical absorption measurements. Low binding constants were observed to charged surfactant micelles, with influence of micellar charge. It must be stated however that those values can be underestimated due to the relatively low sensitivity of the method based on absorption measurements.  相似文献   

17.
The self-assembly of a sterol ethoxylate surfactant with 30 oxyethylene units in water was studied by 1H NMR self-diffusion measurements in a wide concentration range in the micellar region (0-25 wt %). The data showed that the surfactant aggregates do not interact by hard sphere interactions but rather a strong concentration dependence of the diffusion coefficient was noted which was explained by polymer scaling theory. In the cubic phase (30-65 wt %), the self-diffusion data from water, from surfactant, and from free polyoxyethylene suggest spherical micelles, although water diffusion was much restricted due to binding to the surfactant headgroup. From X-ray measurements in the cubic phase, the unit cell size was calculated, and together with surfactant self-diffusion measurements the exchange dynamics between free and aggregated surfactant was obtained.  相似文献   

18.
The true thermodynamic activity (AT) of cholesterol (Ch) in aqueous solutions containing taurocholate (TC)–Ch was determined by employing a direct assay of a 1 × 2-cm silicone polymer film with 0.025 cm thickness. Using theATdata, information on the nature of micellar species present in the TC–Ch system, and employing a binding-site model previously developed for tauroursodeoxycholate (TUDC)–Ch and taurochenodeoxycholate (TCDC)–Ch systems, it appeared that the Ch-binding affinity for simple bile-salt micelles corresponds precisely with the order of hydrophobicity, TUDC < TC < TCDC. Further, although simple TC micelles and simple TCDC micelles have similar binding capacities, the first Ch binding to a simple TC micelle may not significantly facilitate the second Ch binding, as occurs in simple TCDC micelles. For TUDC–Ch, TC–Ch, and TCDC–Ch systems, the concentration of bound simple micelles increased with increasingATvalues, whereas the unbound simple micelle concentration decreased proportionally. These results provide insights into the possible influence of bile-salt species on Ch-binding to simple micelles in bile-salt–Ch solutions.  相似文献   

19.
 The effects of adding 0.1 molal 1-butanol to the aqueous SDS system at 298.1 K and the aqueous PEO–SDS system at 298.1 and 283.1 K have been studied. NMR NOESY experiments on the PEO– SDS–1-butanol system in D2O were obtained. NMR self-diffusion experiments and measurements of NMR chemical shifts and specific conductivity were carried out on the samples, i.e. on samples with PEO and without PEO. The addition of 1-butanol to an aqueous SDS–PEO system decreases the critical aggregation concentration (c.a.c). Determination of the second critical concentration (c 2) depends on the method of measurements, i.e. the molecular species monitored. Conductivity measurements will give c 2 as the SDS concentration where free micelles (micelles not bound to the polymer) are formed. PEO self-diffusion measurements, on the other hand, determine c 2 as the SDS concentration where the polymer is saturated with SDS. Both the c.a.c and the c 2 decrease upon 1-butanol addition. However, the c 2 value exhibits a larger decrease than the c.a.c value. Thus, the amount of polymer bound surfactant molecules decreases upon addition of 1-butanol. Micellar solubilization of 1-butanol starts at c.a.c., but the solubilization capacity is low until the surfactant concentration reaches c 2, where the increase in solubilization is significant. Thus, solubilization data can be used to detect c 2, the concentration where free micelles form. Received: 21 July 1997 Accepted: 9 February 1998  相似文献   

20.
The reaction of dehydrobromination of 2-(p-nitrophenyl)ethyl bromide with hydroxide ions has been studied in aqueous micellar solutions of N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, SB3-14. The kinetic effects of added salts (NaF, NaCl, NaBr, and NaNO(3)) on the reaction rate in SB3-14 aqueous micellar solutions have also been studied. They were rationalized by considering the binding of the anions, which come from the salt, to the sulfobetaine micelles and their competition with the reactive hydroxide ions for the micellar surface. The equilibrium binding constant of the 2-(p-nitrophenyl)ethyl bromide to the sulfobetaine micelles was estimated by recording the changes in the spectra of the organic substrate when the SB3-14 concentration in the micellar medium changed. This value was in agreement with that obtained from fitting of kinetic data. The second-order rate constant in the micellar pseudophase revealed that the reaction is faster in SB3-14 micelles than in water. This acceleration seems independent of the presence of added salts and can be explained by considering that SB3-14 micelles favor reactions in which charge is delocalized in the transition state. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号