首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文主要介绍了金属离子与Langmuir膜及LB膜相互作用中静电、配位等作用方式及其对膜相态和分子二维排列的影响。在此基础上探讨了Langmuir膜对金属离子的识别与传感。以Langmuir膜和LB膜为二维模板诱导无机盐定向生长作为金属/单分子膜结合的重要应用在文中也进行了讨论。通过举例展示了金属离子参与的Langmuir膜和LB膜催化有机反应的特点。最后对金属参与的Langmuir膜和LB膜在功能化和器件化等方面的研究也作了论述, 并通过介绍金属螯合类脂分子的Langmuir膜在蛋白质等生物大分子界面定向聚集研究中的应用表明了金属参与的Langmuir膜及LB 膜在生命科学研究中的意义。全文贯穿了金属结合调节Langmuir膜和LB膜组装结构以及通过金属结合导入功能基团进行有序组装的思想。  相似文献   

2.
The activity of the enzyme urease is known to be inhibited by the heavy metal cadmium. The binding of cadmium to urease and the consequent changes of the enzyme structure are the basis of the surface plasmon resonance (SPR) biosensing system reported herein. To facilitate the formation of a self-assembled monolayer (SAM) of the urease on gold-coated glass SPR sensor disks, the enzyme has been modified with N-succinimidyl 3-(2-pyridyldithiol) propionate (SPDP). The urease monolayer was exposed to trace levels of cadmium ions and monitored by SPR. From circular dichroism (CD) data, it is believed that the conformation of the active nickel site of the urease changes upon binding of the cadmium ions. It is this change of the enzyme monolayer, measured by SPR, which has been related to the cadmium ion concentration in the range of 0–10 mg l−1. These data are the first report of a SPR biosensor capable of detecting metal ions.  相似文献   

3.
We report on the reversible and selective functionalization of surfaces by utilizing supramolecular building blocks. The reversible formation of terpyridine bis-complexes, based on a terpyridine ligand-functionalized monolayer, is used as a versatile supramolecular binding motif. Thereby, click chemistry was applied to covalently bind an acetylene functionalized Fe(II) bis-complex onto azide-terminated self-assembled monolayers. By decomplexation of the formed supramolecular complex, the ligand modified monolayer could be obtained. These monolayers were subsequently used for additional complexation reactions, resulting in the reversible functionalization of the substrates. The proper choice of the coordinating transition metal ions allows the tuning of the binding strength, as well as the physicochemical properties of the formed complexes and thus an engineering of the surface properties.  相似文献   

4.
Several synthetic strategies for the incorporation of supramolecular binding units into polymers are described. Specifically, terpyridine ligands have been introduced into polymers in such a way that they are distributed either randomly throughout the polymer backbone or at the chain end(s). Two terpyridine ligands form octahedral complexes with a variety of transition‐metal ions, each having different properties. Some general statements regarding metal complex stability are presented as well as a special case representing the selective construction of heteroleptic terpyridine complexes. This leads to a kind of LEGO system for connecting and disconnecting the polymer blocks via metal complexes. Metallo‐supramolecular block copolymers, graft copolymers, and chain‐extended polymers can be designed and prepared with the principles described. Once the design parameters have been derived, thorough control over the final material and its properties can be gained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1413–1427, 2003  相似文献   

5.
A new ditopic ligand, 4'-(4-(2,2,2-tris(1H-pyrazol-1-ido)ethoxymethyl)phenyl)-2,2':6',2'-terpyridine (pzt), has been prepared and its coordination chemistry studied. Metal ions with a preference for octahedral geometry form ML(2) complexes that are readily isolated and characterised, with the metal ion being bound to the terpyridine sites of both ligands. Other metal ions bind to the terpyridine site of just one ligand. In the case of silver(i), a dinuclear M(2)L(2) complex has been isolated in which each silver ion is coordinated to the terpyridine site of one ligand and to a single pyrazolyl donor group from the second ligand. Evidence for binding of metal ions to the tris(pyrazolyl) binding site was obtained by electrospray mass spectrometry and NMR techniques. The free ligand and three metal complexes, including the disilver complex, have been characterised by X-ray crystallographic techniques.  相似文献   

6.
The need to develop label‐free biosensing devices that enable rapid analyses of interactions between small molecules/peptides and proteins for post‐genomic studies has increased significantly. We report a simple metal–insulator–metal (MIM) geometry for fabricating a highly sensitive detection platform for biosensing. MIM substrates consisting of an Au–PMMA–Ag nanolayer were extensively studied using both theoretical and experimental approaches. By monitoring reflectivity changes at the normal incidence angle, we observed molecular interactions as the thickness of the biolayer increased on the substrate surface. These interactions included the adsorption of various proteins (Mw=6–150 kD) and interactions between small molecules (Mw≤2 kD) and the immobilized proteins. The interaction of designed monosaccharide‐modified designed peptides with various lectins was also clearly detected. These interactions could not be detected by the conventional Au‐only substrate. Thus, the MIM approach affords a powerful label‐free biosensing device that will aid our understanding of protein interactions and recognition.  相似文献   

7.
8.
This preliminary investigation tests the premise that biologically relevant (1) peptide-metal ion interactions, and (2) metal ion-dependent macromolecular recognition events (e.g., peptide-peptide interactions) may be modeled by biomimetic affinity chromatography. Divinylsulfone-activated agarose (6%) was used to immobilize three different synthetic peptides representing metal-binding protein surface domains from the human plasma metal transport protein histidine-rich glycoprotein (HRG). The synthetic peptides represented 1-3 multiple repeat units of the 5-residue sequence (Gly-His-His-Pro-His) found in the C-terminal of HRG. By frontal analyses, immobilized HRG peptides of the type (GHHPH)nG, where n = 1-3, were each found to have a similar binding capacity for both Cu(II) ions and Zn(II) ions (31-38 mumol/ml gel). The metal ion-dependent interaction of a variety of model peptides with each of the immobilized HRG peptide affinity columns demonstrated differences in selectivity despite the similar internal sequence homology and metal ion binding capacity. The immobilized 11-residue HRG peptide was loaded with Cu(II) ions and used to demonstrate selective adsorption and isolation of proteins from human plasma. These results suggest that immobilized metal-binding peptides selected from known solvent-exposed protein surface metal-binding domains may be useful model systems to evaluate the specificity of biologically relevant metal ion-dependent interaction and transfer events in vitro.  相似文献   

9.
We describe a new co-entrapment and release motif based on the combination of noncovalent and steric interactions in materials with well-defined nanopores. Individual components enter hollow nanocapsules through nanopores in the capsule shell. Their complex, larger than the pore size, remains entrapped. The dissociation of the complex upon external stimulus releases entrapped components. Reversible formation of complexes between diaza-18-crown-6 and metal ions was used to demonstrate the feasibility of new approach to co-entrapment and triggered release.  相似文献   

10.
Takmakov P  Vlassiouk I  Smirnov S 《The Analyst》2006,131(11):1248-1253
Hydrothermal treatment of anodized alumina membranes has been known for years and is believed to seal the pores by transforming aluminium oxide into lower density hydroxides. We demonstrate that, at least for 60 nm diameter pores grown from anodization in oxalic acid at 40 V, the hydrothermal treatment significantly shrinks but does not fully seal the nanopores. The pores shrink to a neck of less than 10 nm in diameter and 2-4 microm in length, in which the diffusion coefficient of ions is five orders of magnitude smaller than in the bulk. Because of a high electrolyte resistance through hydrothermally treated shrunken nanopores, they can be used for electrical sensing applications, as demonstrated using the example of DNA sensing. Hybridization of target DNA with a complementary ssDNA covalently immobilized inside the nanopores causes an increase in impedance by more than 50% while a noncomplementary ssDNA has no measurable effect.  相似文献   

11.
A modular construction kit with two orthogonal noncovalent binding sites for self-assembly of supramolecular architectures is presented. The heteroditopic building blocks contain a terpyridine (tpy) unit for coordination of metal ions and a Hamilton receptor for multiple H-bonding of cyanuric acid derivatives. The association constants of ligand binding of M(II) complexes (M=Ru, Zn, Fe, and Pt) with a dendritic end cap were determined to be in the range of 10(2) and 10(4) L mol(-1) in chloroform. The capabilities for binding of metal ions were investigated by (1)H NMR and UV/Vis spectroscopy. The Fe complexes are most appropriate for the generation of discrete and high-ordered architectures due to their strong tendency to form FeL(2) complexes. Superstructures are readily formed in a one-pot procedure at room temperature. No mutual interactions between the orthogonal binding motifs were observed, and this demonstrates the highly specific nature of each binding process. Decomplexation experiments were carried out to examine the reversibility of Fe-tpy coordination. Substitution of the terminal end cap with a homoditopic bis-cyanurate linkage leads to formation of an iron-containing supramolecular strand. Formation of coordination polymers was confirmed by viscosity measurements. The supramolecular polymer strands can be reversibly cleaved by addition of a terminating cyanuric acid building block, and this proves the dynamic nature of this noncovalent polymerization process.  相似文献   

12.
The change in electrostatical potential-profile across the phospholipid membranes caused by the binding or sorption of ionic compounds (metal cations, ionic surfactants, lipid-soluble ions, and ionophore-metal complexes) can be estimated by the direct measuring method (combination of zeta potential of lipid vesicles and surface potential of lipid monolayer). The analysis of the data by a simple electrical double layer theory reveals the binding/sorption location of these ions. The coexistent effect of metal ions and lipid-soluble ions on the sorption behavior is described from the interfacial electrochemical view point. The coagulation of lipid vesicles caused by those ionic compounds is also discussed.  相似文献   

13.
The enhancement of weak Raman signals has been challenged to obtain high-quality signals of surface-enhanced Raman scattering (SERS). By employing the Parkinson's disease-related protein of α-synuclein, we introduce SERS-active gold nanoparticles (AuNPs) individually isolated with an ultrathin α-synuclein shell and their 2-D array into a tightly packed monolayer on a glass support, which permits a quantitative SERS measurement of phthalocyanine tetrasulfonate (PcTS), a chemical ligand of the pathological protein. Subsequently, the PcTS-bound SERS substrate was also shown to be capable of discriminating two biologically important metal ions of iron and copper by detecting copper ion to the sub-ppm level in a highly selective manner via the in situ chemical reaction of metal chelation to PcTS. The strategy of using the protein-based 2-D AuNP SERS platform, therefore, could be further developed into a custom-made protein-based biosensor system for the detection of not only specific chemical/biological ligands of the immobilized coat proteins but also their biochemical reactivities.  相似文献   

14.
金属-配体间的配位作用是超分子化学中最重要的相互作用之一, 寡聚吡啶配体可以与许多过渡金属离子配位, 形成具有独特磁、光物理和电化学性质的过渡金属络合物, 因此联三吡啶配体的合成及其过渡金属络合物性能研究引起化学家的广泛关注. 综述了联三吡啶配体及其衍生物的合成方法, 主要包括成环缩合反应、过渡金属催化的偶联反应以及其它方法, 并选取具有代表性的实例对联三吡啶配体的结构和合成方法进行详细地阐述.  相似文献   

15.
Ultrathin gold island films evaporated on transparent substrates offer promising transducers for chemical and biological sensing in the transmission surface plasmon resonance (T-SPR) mode. In the present work, the applicability of T-SPR-based systems to biosensing is demonstrated, using a well-established biological model system. Au island films were evaporated on polystyrene slides and modified with a biotinylated monolayer via a multistep surface reaction, the latter assisted by the good adhesion of metal islands to polystyrene. The biotin-derivatized Au island film was then used as a biological recognition surface for selective sensing of avidin binding, distinguishing between specific and nonspecific binding to the substrate. Transduction of the binding event into an optical signal was achieved by T-SPR spectroscopy, using plasmon intensity measurements, rather than wavelength change, for maximal sensitivity and convenience. T-SPR spectroscopy of Au island films is shown to be an effective tool for monitoring the binding of biological molecules to receptor layers on the Au surface and a promising approach to label-free optical biosensing.  相似文献   

16.
[structure: see text]. Palladium-based carbon-carbon coupling reactions in sequence with halogen-exchange chemistry on a series of heterocycles lead to an efficient synthetic strategy for oligopyridines that bind metal ions such as ruthenium to form coordination racks. The particular structures are designed to form terpyridine subunits for octahedral binding. Reaction of 4,6-diiodopyrimidine produces a "double-bay" terpyridine from which binuclear coordination complexes have been formed.  相似文献   

17.
Herein is described a label-free immunosensor dedicated to the detection of HIV-2. The biosensor platform is constructed as a mixed self-assembled monolayer-coated quartz wafer onto which HIV-2 immunodominant epitopes are immobilized. The biosensing properties, in terms of specific vs. non-specific antigen-antibody interactions, are evaluated with the electromagnetic piezoelectric acoustic sensor (EMPAS) using equimolar serum solutions of HIV-2 or HIV-1 monoclonal antibodies, respectively. This immunosensor constitutes the first real-world application of the EMPAS technology in the bioanalytical field.  相似文献   

18.
Thin layers of gold (700 Å) were deposited on manufactured alumina pourous supports to yield nanopores with openings of <7 nm. A self-assembled monolayer (SAM) of alkyl thiols was then attached to provide a hydrophobic support for trialkyl phosphine oxide-based metal ion carriers. The resulting gated membranes provided a barrier to ions including H+, and Ca2+, NO3, and CH3COO. When an aqueous feed solution of 4.2 mM uranyl nitrate and 1 M lithium nitrate pH 4, and a receiving solution of 1 M sodium acetate pH 5.5 were used 100% of the metal was transported across the membrane by facilitated transport via the phosphate or phosphine oxide carrier. The thin gates transported metal ions as neutral nitrate complexes with fluxes high enough to be limited by the alumina support. The flux rates of 200,000 metal ions per pore per second are only a factor of 5 below that observed for the potassium channel. High selectivity of U over Eu is observed until the [U] is <0.84 mM in the feed solution, despite the fact the Eu actually transports faster when U is not present. This work demonstrates that selectivity can be added without impeding transport by using thin selective layers.  相似文献   

19.
Photosynthetic reaction centers were immobilized onto gold screen-printed electrodes (Au-SPEs) using a self-assembled monolayer (SAM) of mercaptopropionic acid (MPA) which was deliberately defective in order to achieve effective mediator transfer to the electrodes. The pure Photosystem II (PS II) cores from spinach immobilize onto the electrodes very efficiently but fair badly in terms of photocurrent response (measured using duroquinone as the redox mediator). The cruder preparation of PS II known as BBY particles performs significantly better under the same experimental conditions and shows a photocurrent response of 20-35 nA (depending on preparation) per screen-printed electrode surface (12.5mm(2)). The data was corroborated using AFM, showing that in the case of BBY particles a defective biolayer is indeed formed, with grooves spanning the whole thickness of the layer enhancing the possibility of mass transfer to the electrodes and enabling biosensing. In comparison, the PS II core layer showed ultra-dense organization, with additional formation of aggregates on top of the single protein layer, thus blocking mediator access to the electrodes and/or binding sites. The defective monolayer biosensor with BBY particles was successfully applied for the detection of photosynthesis inhibitors, demonstrating that the inhibitor binding site remained accessible to both the inhibitor and the external redox mediator. Biosensing was demonstrated using picric acid and atrazine. The detection limits were 1.15 nM for atrazine and 157 nM for picric acid.  相似文献   

20.
Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site‐specific recognition takes advantage of cooperative spatial effects, as in local folding in protein–DNA binding. Herein, we report a new nucleobase‐tagged metal–organic framework (MOF), namely ZnBTCA (BTC=benzene‐1,3,5‐tricarboxyl, A=adenine), in which the exposed Watson–Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson–Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host–guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine–thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号