首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the solution of the non-Abelian SU (3) Chern-Simons field theory defined in a generic three-manifold which is closed, connected and orientable. The surgery rules, which permit us to solve the theory, are derived and several examples of vacuum expectation values of Wilson line operators are computed. The three-manifold invariant associated with the non-Abelian SU (3) Chern-Simons model is defined and its values are computed for various three-manifolds.  相似文献   

2.
《Physics letters. A》1997,229(6):392-400
We analyze the bilayer quantum Hall (QH) system by mapping it to the monolayer QH system with spin degrees of freedom. By this mapping the tunneling interaction term is identified with the Zeeman term. We clarify the mechanism of a spontaneous development of quantum coherence based on the Chern-Simons gauge theory with the lowest-Landau-level projection taken into account. The symmetry group is found to be W × SU(2), which says that the spin rotation affects the total electron density nearby. Using it extensively we construct the Landau-Ginzburg theory of the coherent mode. Skyrmion excitations are topological solitions in this coherent mode. We point out that they are detectable by measuring the Hall current distribution.  相似文献   

3.
Non-Abelian anyons exist in certain spin models and may exist in quantum Hall systems at certain filling fractions. In this work, we studied the ground state of dynamical SU(2) level-kappa Chern-Simons non-Abelian anyons at finite density and no external magnetic field. We find that, in the large-kappa limit, the topological interaction induces a pairing instability and the ground state is a superconductor with d+id gap symmetry. We also develop a picture of pairing for the special value kappa=2 and argue that the ground state is a superfluid of pairs for all values of kappa.  相似文献   

4.
We study a time-reversal invariant non-Abelian spin-liquid state in an SU(2) symmetric spin S=1 quantum magnet on a triangular lattice. The spin liquid is obtained by quantum disordering a noncollinear nematic state. We show that such a spin liquid cannot be obtained by the standard projective construction for spin liquids. We also study the phase transition between the spin liquid and the noncollinear nematic state and show that it cannot be described within the Landau-Ginzburg-Wilson paradigm.  相似文献   

5.
We propose an extended Hubbard model on a 2D kagome lattice with an additional ring exchange term. The particles can be either bosons or spinless fermions. We analyze the model at the special filling fraction 1/6, where it is closely related to the quantum dimer model. We show how to arrive at an exactly soluble point whose ground state is the "d-isotopy" transition point into a stable phase with a certain type of non-Abelian topological order. Near the "special" values, d=2cos(pi/(k+2), this topological phase has anyonic excitations closely related to SU(2) Chern-Simons theory at level k.  相似文献   

6.
7.
Motivated by inelastic neutron scattering data on Cs2CuCl4, we explore spin-1/2 triangular lattice antiferromagnets with both spatial and easy-plane exchange anisotropies, the latter due to an observed Dzyaloshinskii-Moriya interaction. Exploiting a duality mapping followed by a fermionization of the dual vortex degrees of freedom, we find a novel critical spin-liquid phase described in terms of Dirac fermions with an emergent global SU(4) symmetry minimally coupled to a noncompact U(1) gauge field. This "algebraic vortex liquid" supports gapless spin excitations and universal power-law correlations in the dynamical spin structure factor which are consistent with those observed in Cs2CuCl4. We suggest future neutron scattering experiments that should help distinguish between the algebraic vortex liquid and other spin liquids and quantum critical points previously proposed in the context of Cs2CuCl4.  相似文献   

8.
We investigate the interactions and chiral properties of the four spin-3/2 baryons N(-)(D13), N+(P13), Delta+(P33), and Delta(-)(D33) together with the nucleon. We construct the SU(2)R x SU(2)L invariant interactions between the spin-1/2 and spin-3/2 baryons with the aid of a new, specially developed spin and isospin projection technique for these baryon fields, where the chiral invariant interactions contain one- and two-pion couplings. We obtain simple relations for the coupling constants of the one- and two-pion spin-1/2-3/2 transitions terms. The relation for the one-pion interactions reasonably agrees with the experiments, which suggests that these spin-3/2 baryons are chiral partners.  相似文献   

9.
We report a new kagome quantum spin liquid candidate Cu_3 Zn(OH)_6 FBr, which does not experience any phase transition down to 50 mK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature(~200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from~(19)F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fractionalization in the fractional quantum Hall state.  相似文献   

10.
We propose one possible mechanism for an anomalous metallic phase appearing frequently in two spatial dimensions, that is, local pairing fluctuations. Introducing a pair-rotor representation to decompose bare electrons into collective pairing excitations and renormalized electrons, we derive an SU(2) gauge theory of the Hubbard model as an extended version of its U(1) gauge theory. Since our effective SU(2) gauge theory admits two kinds of collective bosons corresponding to pair excitations and density fluctuations, respectively, an intermediate phase appears naturally between the spin liquid Mott insulator and Fermi liquid metal of the U(1) gauge theory, characterized by softening of density-fluctuation modes as the Fermi liquid, but gapping of pair-excitation modes. We show that this intermediate phase is identified with an anomalous metallic phase because there are no electronlike quasiparticles although it is metallic.  相似文献   

11.
In this paper, spinor and vector decompositions of SU(2) gauge potential are presented and their equivalence is constructed using a simply proposal. We also obtain the action of Faddeev nonlinear 0(3) sigma model from the SU(2) mass/ve gauge field theory, which is proposed according to the gauge invariant principle. At last, the knot structure in SU(2) Chern-Simons filed theory is discussed in terms of the Φ-mapping topological current theory, The topological charge of the knot is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.  相似文献   

12.
We develop a nonperturbative gauge mean field theory (gMFT) method to study a general effective spin-1/2 model for magnetism in rare earth pyrochlores. gMFT is based on a novel exact slave-particle formulation, and matches both the perturbative regime near the classical spin ice limit and the semiclassical approximation far from it. We show that the full phase diagram contains two exotic phases: a quantum spin liquid and a Coulombic ferromagnet, both of which support deconfined spinon excitations and emergent quantum electrodynamics. Phenomenological properties of these phases are discussed.  相似文献   

13.
In this paper, the decomposition of SU(2) gauge potential in terms of Pauli spinor is studied. Using thisdecomposition, the spinor structures of Chern-Simons form and the Chern density are obtained. Furthermore, the knotquantum number of non-Abelian gauge theory can be expressed by the Chern-Simons spinor structure, and the secondChern number is characterized by the Hopf indices and the Brouwer degrees of φ-mapping.  相似文献   

14.
In this paper, the decomposition of SU(2) gauge potential in terms of Pauli spinor is studied. Using this decomposition, the spinor structures of Chern Simons form and the Chern density are obtained. Furthermore, the knot quantum number of non-Abelian gauge theory can be expressed by the Chern-Simons spinor structure, and the second Chern number is characterized by the Hopf indices and the Brouwer degrees of Φ-mapping.  相似文献   

15.
16.
Based on the quantization of constrained Hamiltonian system, the quantal conserved laws can be established under the global symmetry transformation. The application of the results to non-Abelian Chern-Simons theory, we can show that property of fractional spin is still preserved at the quantum level in the non-Abelian Chern-Simons theory.  相似文献   

17.
18.
We propose a many-body generalization of the Z2 topological invariant for the quantum spin Hall insulator, which does not rely on single-particle band structures. The invariant is derived as a topological obstruction that distinguishes topologically distinct many-body ground states on a torus. It is also expressed as a Wilson loop of the SU(2) Berry gauge field, which is quantized due to time-reversal symmetry.  相似文献   

19.
The equivalence of 2+1 antiferromagnetic Heisenberg model and the SU(2) Kogut Susskind lattice gauge theory is recapitulated and the naive Euclidean lattice action of the threedimensional an tiferromagnetic Heisen berg model is derived. The three-dimensional lattice gauge fermion theory is formulated to give the consistent lattice gauge theory of antiferromagnetic Heisenberg model. In continu um limit the two copies of two flavor fermions are resulted, which give the negative results of the microscopic derivation of the Chern-Simons terms. The Chern-Simons terms, the gauge invariant problem of effective action and the '%hiralityn are discussed.  相似文献   

20.
Noncollinear magnetic order is typically characterized by a tetrad ground state manifold (GSM) of three perpendicular vectors or nematic directors. We study three types of tetrad orders in two spatial dimensions, whose GSMs are SO(3) = S(3)/Z(2), S(3)/Z(4), and S(3)/Q(8), respectively. Q(8) denotes the non-Abelian quaternion group with eight elements. We demonstrate that after quantum disordering these three types of tetrad orders, the systems enter fully gapped liquid phases described by Z(2), Z(4), and non-Abelian quaternion gauge field theories, respectively. The latter case realizes Kitaev's non-Abelian toric code in terms of a rather simple spin-1 SU(2) quantum magnet. This non-Abelian topological phase possesses a 22-fold ground state degeneracy on the torus arising from the 22 representations of the Drinfeld double of Q(8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号