首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
An ab initio molecular dynamics method was used to compare the ionic dissolution of soluble sodium chloride (NaCl) in water clusters with the highly insoluble silver chloride (AgCl). The investigations focused on the solvation structures, dynamics, and energetics of the contact ion pair (CIP) and of the solvent-separated ion pair (SSIP) in NaCl(H(2)O)(n) and AgCl(H(2)O)(n) with cluster sizes of n = 6, 10 and 14. We found that the minimum cluster size required to stabilize the SSIP configuration in NaCl(H(2)O)(n) is temperature-dependent. For n = 6, both configurations are present as two distinct local minima on the free-energy profile at 100 K, whereas SSIP is unstable at 300 K. Both configurations, separated by a low barrier (<10 kJ mol(-1)), are identifiable on the free energy profiles of NaCl(H(2)O)(n) for n = 10 and 14 at 300 K, with the Na(+)/Cl(-) pairs being internally solvated in the water cluster and the SSIP configuration being slightly higher in energy (<5 kJ mol(-1)). In agreement with the low bulk solubility of AgCl, no SSIP minimum is observed on the free-energy profiles of finite AgCl(H(2)O)(n) clusters. The AgCl interaction is more covalent in nature, and is less affected by the water solvent. Unlike NaCl, AgCl is mainly solvated on the surface in finite water clusters, and ionic dissolution requires a significant reorganization of the solvent structure.  相似文献   

2.
The roles of hydrogen bonds in the solvation of an excess electron and a lithium atom in water hexamer cluster at 150 K have been studied by means of ab initio molecular dynamics simulations. It is found that the hydrogen bonded structures of (H(2)O)(6)(-) and Li(H(2)O)(6) clusters are very different from each other and they dynamically evolve from one conformer to other along their simulation trajectories. The populations of the single acceptor, double acceptor, and free type water molecules are found to be significantly high unlike that in pure water clusters. Free hydrogens of these type of water molecules primarily capture the unbound electron density in these clusters. It is found that the binding motifs of the free electron evolve with time and the vertical detachment energy of (H(2)O)(6)(-) and vertical ionization energy of Li(H(2)O)(6) also change with time. Assignments of the observed peaks in vibrational power spectra are done, and we found direct correlations between the time-averaged population of water molecules in different hydrogen bonding states and the spectral features. The dynamical aspects of these clusters have also been studied through calculations of time correlations of instantaneous stretch frequencies of OH modes which are obtained from the simulation trajectories through a time series analysis.  相似文献   

3.
Gaussian-3 and MP2/aug-cc-pVnZ methods have been used to calculate geometries and thermochemistry of CS(2)(H2O)n, where n=1-4. An extensive molecular dynamics search followed by optimization using these two methods located two dimers, six trimers, six tetramers, and two pentamers. The MP2/aug-cc-pVDZ structure matched best with the experimental result for the CS(2)(H2O) dimer, showing that diffuse functions are necessary to model the interactions found in this complex. For larger CS(2)(H2O)n clusters, the MP2/aug-cc-pVDZ minima are significantly different from the MP2(full)6-31G* structures, revealing that the G3 model chemistry is not suitable for investigation of sulfur containing van der Waals complexes. Based on the MP2/aug-cc-pVTZ free energies, the concentration of saturated water in the atmosphere and the average amount of CS(2) in the atmosphere, the concentrations of these clusters are predicted to be on the order of 10(5) CS(2)(H2O) clusters.cm(-3) and 10(2) CS(2)(H2O)(2) clusters.cm(-3) at 298.15 K. The MP2/aug-cc-pVDZ scaled harmonic and anharmonic frequencies of the most abundant dimer cluster at 298 K are presented, along with the MP2/aug-cc-pVDZ scaled harmonic frequencies for the CS(2)(H(2)O)(n) structures predicted to be present in a low-temperature molecular beam experiment.  相似文献   

4.
First principles molecular dynamics simulations are carried out to investigate the solvation of an excess electron and a lithium atom in mixed water-ammonia cluster (H(2)O)(5)NH(3) at a finite temperature of 150 K. Both [(H(2)O)(5)NH(3)](-) and Li(H(2)O)(5)NH(3) clusters are seen to display substantial hydrogen bond dynamics due to thermal motion leading to many different isomeric structures. Also, the structures of these two clusters are found to be very different from each other and also very different from the corresponding neutral cluster without any excess electron or the metal atom. Spontaneous ionization of Li atom occurs in the case of Li(H(2)O)(5)NH(3). The spatial distribution of the singly occupied molecular orbital shows where and how the excess (or free) electron is primarily localized in these clusters. The populations of single acceptor (A), double acceptor (AA), and free (NIL) type water and ammonia molecules are found to be significantly high. The dangling hydrogens of these type of water or ammonia molecules are found to primarily capture the free electron. It is also found that the free electron binding motifs evolve with time due to thermal fluctuations and the vertical detachment energy of [(H(2)O)(5)NH(3)](-) and vertical ionization energy of Li(H(2)O)(5)NH(3) also change with time along the simulation trajectories. Assignments of the observed peaks in the vibrational power spectra are done and we found a one to one correlation between the time-averaged populations of water and ammonia molecules at different H-bonding sites with the various peaks of power spectra. The frequency-time correlation functions of OH stretch vibrational frequencies of these clusters are also calculated and their decay profiles are analyzed in terms of the dynamics of hydrogen bonded and dangling OH modes. It is found that the hydrogen bond lifetimes in these clusters are almost five to six times longer than that of pure liquid water at room temperature.  相似文献   

5.
The prominent (SiO(2))(8)O(2)H(3) (-) mass peak resulting from the laser ablation of hydroxylated silica, attributed to magic cluster formation, is investigated employing global optimization with a dedicated interatomic potential and density functional calculations. The low-energy spectra of cluster isomers are calculated for the closed shell clusters: (SiO(2))(8)OH(-) and (SiO(2))(8)O(2)H(3) (-) giving the likely global minima in each case. Based upon our calculated cluster structures and energetics, and further on the known experimental details, it is proposed that the abundant formation of (SiO(2))(8)O(2)H(3) (-) clusters is largely dependent on the high stability of the (SiO(2))(8)OH(-) ground state cluster. Both the (SiO(2))(8)O(2)H(3) (-) and (SiO(2))(8)OH(-) ground state clusters are found to exhibit cagelike structures with the latter containing a particularly unusual tetrahedrally four-coordinated oxygen center not observed before in either bulk silica or silica clusters. The bare ground state (SiO(2))(8)O(2-) cluster ion core is also found to have four tetrahedrally symmetric Si==O terminations making it a possible candidate, when combined with suitable cations, for extended cluster-based structures/materials.  相似文献   

6.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

7.
Hydrogen-bonded heteroclusters of H(2)O(2)...(H(2)O)(n)(), with n varying from 1 through 6, have been investigated herein employing ab initio quantum chemical methods. For a given n, several energetically comparable conformers emerge as local minima on the potential energy surface (PES). All of the conformers obtained at restricted Hartree-Fock (RHF) and M?ller-Plesset second-order perturbation (MP2) levels of theory exhibit parallel trends in energy hierarchy. The effect of clustering by water on the modification in the vibrational frequencies has also been investigated and further, a many-body interaction-energy analysis is carried out providing insights into cooperativity in H(2)O(2)...(H(2)O)(n)() clusters.  相似文献   

8.
Likely candidates for the global potential energy minima of C60(H2O)n clusters with n < or = 21 are found using basin-hopping global optimization. The potential energy surfaces are constructed using the TIP4P intermolecular potential for the water molecules, a Lennard-Jones water-fullerene potential, and a water-fullerene polarization potential, which depends on the first few nonvanishing C60 multipole polarizabilities. This combination produces a rather hydrophobic water-fullerene interaction. As a consequence, the water component of the lowest C60(H2O)n minima is quite closely related to low-lying minima of the corresponding TIP4P (H2O)n clusters. In most cases, the geometrical substructure of the water molecules in the C60(H2O)n global minimum coincides with that of the corresponding free water cluster. Exceptions occur when the interaction with C60 induces a change in geometry. This qualitative picture does not change significantly if we use the TIP3P model for the water-water interaction. Structures such as C60@(H2O)60, in which the water molecules surround the C60 fullerene, correspond to local minima with much higher potential energies. For such a structure to become the global minimum, the magnitude of the water-fullerene interaction must be increased to an unphysical value.  相似文献   

9.
Upon excitation of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters, the electron transfers from the anionic precursor to the solvent, and then the excess electron is stabilized by polar solvent molecules. This process has been investigated using ab initio molecular dynamics (AIMD) simulations of excited states of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) clusters. The AIMD simulation results of Cl(-)(H(2)O)(3) and I(-)(H(2)O)(3) are compared, and they are found to be similar. Because the role of the halogen atom in the photoexcitation mechanism is controversial, we also carried out AIMD simulations for the ground-state bare excess electron -- water trimer [e(-)(H(2)O)(3)] at 300 K, the results of which are similar to those for the excited state of X(-)(H(2)O)(3) with zero kinetic energy at the initial excitation. This indicates that the rearrangement of the complex is closely related to that of e(-)(H(2)O)(3), whereas the role of the halide anion is not as important.  相似文献   

10.
Here we report negative electron affinities of NO(2)(-).(H2O)n clusters (n=0-30) obtained from density functional theory calculations and a simple correction to Koopmans' theorem. The method relies on the calculation of the detachment energy of the monoanion and its highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and explicit calculations on the dianion itself are avoided. A good agreement with resonances in the cross section for neutral production in electron scattering experiments is found for n=0, 1, and 2. We find several isomeric structures of NO(2)(-).(H2O)2 of similar energy that elucidate the interplay between water-water and ion-water interactions. The topology is predicted to influence the electron affinity by 0.5 and 0.4 eV for NO(2)(-).(H2O) and NO(2)(-).(H2O)2, respectively. The electron affinity of larger clusters is shown to follow a (n+delta)-1/3 dependence, where delta=3 represents the number of water molecules that in volume, could replace NO(2) (-).  相似文献   

11.
The electron binding energies and relaxation dynamics of water cluster anions (H(2)O)(n)(-) (11 ≤ n ≤ 80) formed in co-expansions with neon were investigated using one-photon and time-resolved photoelectron imaging. Unlike previous experiments with argon, water cluster anions exhibit only one isomer class, the tightly bound isomer I with approximately the same binding energy as clusters formed in argon. This result, along with a decrease in the internal conversion lifetime of excited (H(2)O)(n)(-) (25 ≤ n ≤ 40), indicates that clusters are vibrationally warmer when formed in neon. Over the ranges studied, the vertical detachment energies and lifetimes appear to converge to previously reported values.  相似文献   

12.
We have previously demonstrated that H-bond arrangement has a significant influence on the energetics, structure and chemistry of water clusters. In this work, the effect of H-bond orientation on the dissociation of hydrogen fluoride with seven water molecules is studied by means of graph theory and high level ab initio methods. It is found that cubic structures of HF(H(2)O)(7) are more stable than structures of other topologies reported in the literature. Electronic calculations on all possible H-bond orientations of cubie-HF(H(2)O)(7) show that ionized structures are energetically more favorable than nonionized ones. This is an indication that seven water molecules might be capable of ionizing hydrogen fluoride.  相似文献   

13.
We employed a four-step searching/screening approach to determine best candidates for the global minima of (H2O)11 and (H2O)13. This approach can be useful when there exist a large number of low-lying and near-isoenergetic isomers, many of which have the same oxygen-skeleton structure. On the two new candidates for the global minimum of (H2O)11, one isomer can be viewed as placing the 11th molecule onto the side of the global minimum of (H2O)10 and the other can be viewed as removing the 12th molecule from the middle layer of the global minimum of (H2O)12. The three leading lowest-energy clusters of (H2O)13 can all be built starting from the global minimum of (H2O)12, with the difference being in the location of the 13th water molecule.  相似文献   

14.
The characteristics of the interaction between the pi cloud of naphthalene and up to two H2O or H2S molecules were studied. Calculations show that clusters formed by naphthalene and one H2O or H2S molecule have similar geometric features, and also present similar interaction energies. Our best estimates for the interaction energy amount to -2.95 and -2.92 kcal/mol for H2O and H2S, respectively, as obtained with the CCSD(T) method. Calculations at the MP2 level employing large basis sets should be avoided because they produce highly overestimated interaction energies, especially for hydrogen sulfide complexes. The MPWB1K functional, however, provides values pretty similar to those obtained with the CCSD(T) method. Although the magnitude of the interaction is similar with both H2X molecules, its nature is somewhat different: the H2O complex presents electrostatic and dispersion contributions of similar magnitude, whereas for H2S the interaction is dominated by dispersion. In clusters containing two H2X molecules several minima were characterized. In water clusters, the total interaction energy is dominated by the presence of a O-H...O hydrogen bond and, as a consequence, structures where this contact is present are the most stable. However, clusters containing H2S show structures with no interaction between H2S moieties which are as stable as the hydrogen bonded ones, because they allow an optimal H2S...naphthalene interaction, which is stronger than the S-H...S contact. Therefore it is possible that in larger polycycles hydrogen sulfide molecules will be spread onto the surface maximizing S-H...pi interactions rather than aggregated, forming H2S clusters.  相似文献   

15.
Molecular-dynamics (MD) trajectories and high-level ab initio methods have been used to study the low-energy mechanism for D(2)O-H(+)(H(2)O)(n) reactions. At low collisional energies, MD simulations show that the collisional complexes are long-lived and undergo fast monomolecular isomerization, converting between different isomers within 50-500 ps. Such processes, primarily involving water-molecule shifts along a water chain, require the surmounting of very-low-energy barriers and present sizable non- Rice-Ramsperger-Kassel-Marcus (RRKM) effects, which are interpreted as a lack of randomization of the internal kinetic energy. Interestingly, the rate of water shifts was found to increase upon increasing the size of the cluster. Based on these findings, we propose to incorporate the following steps into the mechanism for low-energy isotopic scrambling these D(2)O-H(+)(H(2)O)(n) reactions: a) formation of the collisional complex [H(+)(H(2)O)(n)D(2)O]* in a vibro-rotational excited state; b) incorporation of the heavy-water molecule in the cluster core as HD(2)O(+) by means of isomerization involving molecular shifts; c) displacement of solvation molecules from the first shell of HD(2)O(+) inducing de-deuteration (shift of a D(+) to a neighbor water molecule); d) reorganization of the clusters and/or expulsion of one of the isotopic variants of water (H(2)O, HDO or D(2)O) from the periphery of the complex.  相似文献   

16.
Deeth RJ  Elding LI 《Inorganic chemistry》1996,35(17):5019-5026
Density functional theory is applied to modeling the exchange in aqueous solution of H(2)O on [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)]. Optimized structures for the starting molecules are reported together with trigonal bipyramidal (tbp) systems relevant to an associative mechanism. While a rigorous tbp geometry cannot by symmetry be the actual transition state, it appears that the energy differences between model tbp structures and the actual transition states are small. Ground state geometries calculated via the local density approximation (LDA) for [Pd(H(2)O)(4)](2+) and relativistically corrected LDA for the Pt complexes are in good agreement with available experimental data. Nonlocal gradient corrections to the LDA lead to relatively inferior structures. The computed structures for analogous Pd and Pt species are very similar. The equatorial M-OH(2) bonds of all the LDA-optimized tbp structures are predicted to expand by 0.25-0.30 ?, while the axial bonds change little relative to the planar precursors. This bond stretching in the transition state counteracts the decrease in partial molar volume caused by coordination of the entering water molecule and can explain qualitatively the small and closely similar volumes of activation observed. The relatively higher activation enthalpies of the Pt species can be traced to the relativistic correction of the total energies while the absolute DeltaH() values for exchange on [Pd(H(2)O)(4)](2+) and [Pt(H(2)O)(4)](2+) are reproduced using relativistically corrected LDA energies and a simple Born model for hydration. The validity of the latter is confirmed via some simple atomistic molecular mechanics estimates of the relative hydration enthalpies of [Pd(H(2)O)(4)](2+) and [Pd(H(2)O)(5)](2+). The computed DeltaH() values are 57, 92, and 103 kJ/mol compared to experimental values of 50(2), 90(2), and 100(2) kJ/mol for [Pd(H(2)O)(4)](2+), [Pt(H(2)O)(4)](2+), and trans-[PtCl(2)(H(2)O)(2)], respectively. The calculated activation enthalpy for a hypothetical dissociative water exchange at [Pd(H(2)O)(4)](2+) is 199 kJ/mol. A qualitative analysis of the modeling procedure, the relative hydration enthalpies, and the zero-point and finite temperature corrections yields an estimated uncertainty for the theoretical activation enthalpies of about 15 kJ/mol.  相似文献   

17.
(H2O)(6) (-) appears as a "magic" number water cluster in (H2O)(n) (-) mass spectra. The structure of the (H2O)(6) (-) isomer dominating the experimental population has been established only recently [N. I. Hammer et al., J. Phys. Chem. A 109, 7896 (2005)], and the most noteworthy characteristic of this isomer is the localization of the excess electron in the vicinity of a double-acceptor monomer. In the present work, we use a quantum Drude model to characterize the low-energy isomers and the finite temperature properties of (H2O)(6) (-). Comparison with ab initio calculations shows that the use of a water model employing distributed polarizabilities and distributed repulsive sites is necessary to correctly reproduce the energy ordering of the low-lying isomers. Both the simulations and the ab initio calculations predict that there are several isomers of (H2O)(6) (-) significantly lower in energy than the experimentally observed species, suggesting that the experimental distribution is far from equilibrium.  相似文献   

18.
The mass-selected [(CO(2))(2)(H(2)O)(m)](-) cluster anions are studied using a combination of photoelectron imaging and photofragment mass spectroscopy at 355 nm. Photoelectron imaging studies are carried out on the mass-selected parent cluster anions in the m=2-6 size range; photofragmentation results are presented for m=3-11. While the photoelectron images suggest possible coexistence of the CO(2) (-)(H(2)O)(m)CO(2) and (O(2)CCO(2))(-)(H(2)O)(m) parent cluster structures, particularly for m=2 and 3, only the CO(2) (-) based clusters are both required and sufficient to explain all fragmentation pathways for m>/=3. Three types of anionic photofragments are observed: CO(2) (-)(H(2)O)(k), O(-)(H(2)O)(k), and CO(3) (-)(H(2)O)(k), k6) is attributed to hindrance from the H(2)O molecules.  相似文献   

19.
By first principles calculations, we explore the possibility that Na(-)(H(2)O)(n) and Li(-)(H(2)O)(n) clusters, which have been measured previously by photoelectron experiments, could serve as gas-phase molecular models for the solvation of two electrons. Such models would capture the electron-electron interaction in a solution environment, which is missed in the well-known anionic water clusters (H(2)O)(n) (-). Our results show that by n = 10, the two loosely bound s electrons in Li(-)(H(2)O)(n) are indeed detached from lithium, and they could exist in either the singlet (spin-paring) or the triplet (spin-coupling) state. In contrast, the two electrons would prefer to stay on the sodium atom in Na(-)(H(2)O)(n) and on the surface of the cluster. The formation of a solvated electron pair and the variation in solvation structures make these two cluster series interesting subjects for further experimental investigation.  相似文献   

20.
The structures and energies of hydrated oxalate clusters, C2O4(2-)(H2O)n, n = 6-12, are obtained by density functional theory (DFT) calculations and compared to SO4(2-)(H2O)n. Although the evolution of the cluster structure with size is similar to that of SO4(2-)(H2O)n, there are a number of important and distinctive futures in C2O4(2-)(H2O)n, including the separation of the two charges due to the C-C bond in C2O4(2-), the lower symmetry around C2O4(2-), and the torsion along the C-C bond, that affect both the structure and the solvation energy. The solvation dynamics for the isomers of C2O4(2-)(H2O)12 are also examined by DFT based ab initio molecular dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号