首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We present here a static solution for a large black hole (whose horizon radius is larger than the AdS radius) located on the brane in RSII model. According to some arguments based on the AdS/CFT conjecture, a solution for the black hole located on the brane in RSII model must encode quantum gravitational effects and therefore cannot be static. We demonstrated that a static solution can be found if the bulk is not empty. The stress energy tensor of the matter distribution in the bulk for the solution we found is physical (i.e. it is non-singular with the energy density and pressure not violating any energy conditions). The scale of the solution is given by a parameter “a”. For large values of the parameter “a” we have a limit of an almost empty AdS bulk. It is interesting that the solution cannot be transformed into the Schwarzschild-like form and does not reduce to the Schwarzschild solution on the brane. We also present two other related static solutions. At the end, we discuss why the numerical methods failed so far in finding static solutions in this context, including the solutions we found analytically here.  相似文献   

2.
We construct exact gravitational field solutions for a relativistic particle localized on a tensional brane in brane-induced gravity. They are a generalization of gravitational shock waves in 4D de Sitter space. We provide the metrics for both the normal branch and the self-inflating branch Dvali-Gabadadze-Porrati brane worlds, and compare them to the 4D Einstein gravity solution and to the case when gravity resides only in the 5D bulk, without any brane-localized curvature terms. At short distances the wave profile looks the same as in four dimensions. The corrections appear only far from the source, where they differ from the long distance corrections in 4D de Sitter space. We also discover a new nonperturbative channel for energy emission into the bulk from the self-inflating [corrected] branch, when gravity is modified at the de Sitter radius.  相似文献   

3.
We use the AdS/CFT correspondence to compute the energy radiated by an infinitely massive half-Bogomol'nyi-Prasad-Sommerfeld particle charged under N=4 super Yang-Mills theory, transforming in the symmetric or antisymmetric representation of the gauge group, and moving in the vacuum, to all orders in 1/N and for large 't Hooft coupling. For the antisymmetric case we consider D5-branes reaching the boundary of five-dimensional anti-de Sitter space (AdS(5)) at arbitrary timelike trajectories, while for the symmetric case, we consider a D3-brane in AdS(5) that reaches the boundary at a hyperbola. We compare our results to the one obtained for the fundamental representation, deduced by considering a string in AdS(5).  相似文献   

4.
Bouncing branes     
We investigate (4+1)- and (5+0)-dimensional gravity coupled to a non-compact scalar field sigma-model in the context of a single-brane-world scenario with separable metric and a bulk fluid. We briefly discuss the standard cosmological solutions and the family of warp factors (which includes both the original Randall–Sundrum [Phys. Rev. Lett. 83 (1999) 3370, hep-ph/9905221; Phys. Rev. Lett. 83 (1999) 4690, hep-th/9906064] solution and the solution of Kachru, Schulz and Silverstein [H.A. Chamblin, H.S. Reall, Nucl. Phys. B 562 (1999) 133, hep-th/9903225; S. Kachru, M. Schulz, E. Silverstein, Phys. Rev. D 62 (2000) 045021, hep-th/0001206]) for the case of a rolling fifth radius [C. Kennedy, E.M. Prodanov, Phys. Lett. B 488 (2000) 11, hep-th/0003299]. We show how this model can be adjusted so that it describes the standard cosmology on a self-tuning domain wall (with static fifth radius) [C. Kennedy, E.M. Prodanov, hep-th/0010202] and we discuss the solutions. Searching for a possible relation to the negative Euclidean stress energy, appearing in the Giddings and Strominger's axion induced topology change in quantum gravity and string theory [S.B. Giddings, A. Strominger, Nucl. Phys. B 306 (1988) 890], we modify the non-compact sigma-model into a single-field model (with a rolling fifth radius, separable metric, and no bulk fluid) for the more general case of a brane with non-zero curvature parameter. We find a solution (with a Kachru–Schulz–Silverstein warp factor [Phys. Rev. D 62 (2000) 045021, hep-th/0001206]), representing a Tolman wormhole for a brane with Lorentz metric and for a brane with positive definite metric.  相似文献   

5.
We construct intersecting brane configurations in anit-de Sitter (AdS) space which localize gravity to the intersection region, generalizing the trapping of gravity to any number n of infinite extra dimensions. Since the 4D Planck scale M(Pl) is determined by the fundamental Planck scale M(*) and the AdS radius L via the familiar relation M(2)(Pl) approximately M(2+n)(*)L(n), we get two kinds of theories with TeV scale quantum gravity and submillimeter deviations from Newton's law. With M(*) approximately TeV and L approximately submillimeter, we recover the phenomenology of theories with large extra dimensions. Alternatively, if M(*) approximately L-1 approximately M(Pl), and our 3-brane is at a distance of approximately 100M(-1)(Pl) from the intersection, we obtain a theory with an exponential determination of the weak/Planck hierarchy.  相似文献   

6.
In the same sense that 5D anti-de Sitter space (AdS(5)) warped geometries arise naturally from type IIB string theory with stacks of D3 branes, AdS(7) warped geometries arise naturally from M theory with stacks of M5 branes. We compactify two spatial dimensions of AdS(7) to get AdS(5) x Sigma(2), where the metric for Sigma(2) inherits the same warp factor as appears in the AdS(5). We analyze the 5D spectrum in detail for the case of a bulk scalar or a graviton in AdS(5) x T(2), in a setup which mimics the first Randall-Sundrum model. The results display novel features which might be observed in experiments at the CERN Large Hadron Collider. For example, we obtain TeV scale string winding states without lowering the string scale. This is due to the double warping which is a generic feature of winding states along compactified AdS directions. Experimental verification of these signatures of AdS(7) could be interpreted as direct evidence for M theory.  相似文献   

7.
《Physics Reports》2002,369(6):549-686
In this report we review the microscopic formulation of the five-dimensional black hole of type IIB string theory in terms of the D1–D5 brane system. The emphasis here is more on the brane dynamics than on supergravity solutions. We show how the low energy brane dynamics, combined with crucial inputs from AdS/CFT correspondence, leads to a derivation of black hole thermodynamics and the rate of Hawking radiation. Our approach requires a detailed exposition of the gauge theory and conformal field theory of the D1–D5 system. We also discuss some applications of the AdS/CFT correspondence in the context of black hole formation in three dimensions by thermal transition and by collision of point particles.  相似文献   

8.
We study Kerr-Schild type perturbations with a non-null perturbation vector in the vacuum case. The perturbation equations are derived and it is shown that they lead to constraints on the background space-time which can be interpreted in terms of the curvature of 3-spaces. The first order perturbation equations are used to construct new Petrov type D solutions tangent to the Schwarzschild metric.  相似文献   

9.
We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.  相似文献   

10.
We discuss the weak gravitational field created by isolated matter sources in the Randall-Sundrum brane world. For the case of a single wall of positive tension, the field stays localized near the wall if the source is stationary. We calculate the leading Kaluza-Klein corrections to the linearized gravitational field of a nonrelativistic spherical object, which is different from the Schwarzschild solution at large distances. In the case of two branes of opposite tension, linearized Brans-Dicke (BD) gravity is recovered on either wall, with different BD parameters. On the wall with positive tension the BD parameter is larger than 3000 provided that the separation between walls is larger than 4 times the AdS radius. The gravitational field due to shadow matter is also considered.  相似文献   

11.
The deformation of the connection in three spacetime dimensions by the kinematically equivalent coframe is shown to induce a duality between the (Lorentz-) rotational and translational field momenta, for which the coupling to the deformation parameter is inverted. This new kind of strong/weak duality, pertinent to 3D, is instrumental for studying exact solutions of the 3D Poincaré gauge field equations and the particle content of propagating modes on a background of constant curvature. For a topological Chern-Simons model of gravity, the propagating modes ‘living’ on an Anti-de Sitter (AdS) background correspond to real massive particles. Yang-Mills type generalizations and new cubic Lagrangians are found and completely classified in 3D. AdS or black hole type solutions with constant axial torsion emerge, also for these higher-order Lagrangians with new ‘exotic’ torsion-curvature couplings. Their pattern complies with our S-duality, with new repercussions for the field redefinition of the metric in 3D quantum gravity and the cosmological constant problem.  相似文献   

12.
The light-like linear dilaton background presents a simple time dependent solution of type II supergravity equations of motion that preserves 1/2 supersymmetry in ten dimensions. We construct supergravity D-brane solutions in a linear dilaton background starting from the known intersecting brane solutions in string theory. By applying a Penrose limit on the intersecting (NS1–NS5–NS5′)-brane solution, we find out a D5-brane in a linear dilaton background. We solve the Killing spinor equations for the brane solutions explicitly, and show that they preserve 1/4 supersymmetry. We also find a M5-brane solution in eleven-dimensional supergravity.  相似文献   

13.
We obtain an exact solution of the supergravity equations of motion in which the four-dimensional observed Universe is one of a number of colliding D3 branes in a Calabi-Yau background. The collision results in the ten-dimensional spacetime splitting into disconnected regions, bounded by curvature singularities. However, near the D3 branes the metric remains static during and after the collision. We also obtain a general class of solutions representing p-brane collisions in arbitrary dimensions, including one in which the universe ends with the mutual annihilation of a positive-tension and a negative-tension 3 brane.  相似文献   

14.
We discuss possible variations of the effective gravitational constant with length scale, predicted by most of alternative theories of gravity and unified models of physical interactions. After giving a brief general exposition, we review in more detail the predicted corrections to Newton’s law of gravity in diverse brane world models. We consider various configurations in 5 dimensions (flat, de Sitter and AdS branes in Einstein and Einstein–Gauss–Bonnet theories, with and without induced gravity and possible incomplete graviton localization), 5D multi-brane systems and some models in higher dimensions. A common feature of all models considered is the existence of corrections to Newton’s law at small radii comparable with the bulk characteristic length: at such radii, gravity on the brane becomes effectively multidimensional. Many models contain superlight perturbation modes, which modify gravity at large scale and may be important for astrophysics and cosmology.  相似文献   

15.
We consider spacetime to be a connected real 4‐manifold equipped with a Lorentzian metric and an affine connection. The 10 independent components of the (symmetric) metric tensor and the 64 connection coefficients are the unknowns of our theory. We introduce an action which is (purely) quadratic in curvature and study the resulting system of Euler–Lagrange equations. In the first part of the paper we look for Riemannian solutions, i.e. solutions whose connection is Levi‐Civita. We find two classes of Riemannian solutions: 1) Einstein spaces, and 2) spacetimes with pp‐wave metric of parallel Ricci curvature. We prove that for a generic quadratic action these are the only Riemannian solutions. In the second part of the paper we look for non‐Riemannian solutions. We define the notion of a “Weyl pseudoinstanton” (metric compatible spacetime whose curvature is purely of Weyl type) and prove that a Weyl pseudoinstanton is a solution of our field equations. Using the pseudoinstanton approach we construct explicitly a non‐Riemannian solution which is a wave of torsion in a spacetime with Minkowski metric. We discuss the possibility of using this non‐Riemannian solution as a mathematical model for the neutrino.  相似文献   

16.
17.
Significant evidence is presented in favor of the holographic conjecture that "4D black holes localized on the brane found by solving the classical bulk equations in AdS5 are quantum corrected black holes and not classical ones." The quantum correction to the Newtonian potential is computed using a numerical computation of in Schwarzschild spacetime for matter fields in the zero-temperature Boulware vacuum state. For the conformally invariant scalar field the leading order term is equivalent to that previously obtained in the weak-field approximation using Feynman diagrams and which has been shown to be equivalent, via the anti-de Sitter space/conformal-field-theory (AdS/CFT) duality, to the analogous calculation in Randall-Sundrum braneworlds. The 4D backreaction equations are used to make a prediction about the existence and the possible spacetime structure of macroscopic static braneworld black holes.  相似文献   

18.
Much work has been devoted to the phenomenology and cosmology of the so-called braneworld universe, where the (3+1)-dimensional universe familiar to us lies on a brane surrounded by a (4+1)-dimensional bulk spacetime that is essentially empty except for a negative cosmological constant and the various modes associated with gravity. For such a braneworld cosmology, the difficulty of justifying a set of preferred initial conditions inevitably arises. The various proposals for inflation restricted to the brane only partially explain the homogeneity and isotropy of the resulting braneworld universe because the three-dimensional homogeneity and isotropy of the bulk must be assumed a priori. In this Letter we propose a mechanism by which a brane surrounded by AdS space arises naturally in such a way that the homogeneity and isotropy of both the brane and the bulk are guaranteed. We postulate an initial false vacuum phase of (4+1)-dimensional de Sitter, or possibly Minkowski, space subsequently decaying to a true vacuum of anti-de Sitter space, assumed discretely degenerate. This decay takes place through bubble nucleation. When two bubbles of the true AdS vacuum eventually collide, because of the degeneracy of the true AdS vacuum, a brane (or domain wall) inevitably forms separating the two AdS phases. It is on this brane that we live. The SO(3,1) symmetry of the collision geometry ensures the three-dimensional spatial homogeneity and isotropy of the universe on the brane as well as of the bulk. In the semi-classical (→0) limit, this SO(3,1) symmetry is exact. We sketch how the leading quantum corrections translate into cosmological perturbations.  相似文献   

19.
We present a 5D gauge theory in warped space based on a bulk SU(2)L x SU(2)R x U(1)(B-L) gauge group where the gauge symmetry is broken by boundary conditions. The symmetry breaking pattern and the mass spectrum resemble that in the standard model (SM). To leading order in the warp factor the rho parameter and the coupling of the Z (S parameter) are as in the SM, while corrections are expected at the level of a percent. From the anti-de Sitter (AdS) conformal field theory point of view the model presented here can be viewed as the AdS dual of a (walking) technicolorlike theory, in the sense that it is the presence of the IR brane itself that breaks electroweak symmetry, and not a localized Higgs on the IR brane (which should be interpreted as a composite Higgs model). This model predicts the lightest W, Z, and gamma resonances to be at around 1.2 TeV, and no fundamental (or composite) Higgs particles.  相似文献   

20.
We review some properties of solutions to 5D Einstein gravity with a discrete fifth dimension. Those properties depend on the discretization scheme we use. In particular, we find that the neglect of the lapse field (along the discretized direction) gives rise to Randall–Sundrum-type metric with a negative tension brane. However, no brane source is required. The inclusion of the lapse field gives rise to solutions whose continuum limit is gauge fixed by the discretization scheme. We show also that the models allow a continuous mass spectrum for the gravitons with an effective 4D interaction at small scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号