首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We study in 2-dimensions the superfluid density of periodically modulated states in the framework of the mean-field Gross-Pitaevskiǐ model of a quantum solid. We obtain a full agreement for the superfluid fraction between a semi-theoretical approach and direct numerical simulations. As in 1-dimension, the superfluid density decreases exponentially with the amplitude of the particle interaction. We discuss the case when defects are present in this modulated structure. In the case of isolated defects (e.g. dislocations) the superfluid density only shows small changes. Finally, we report an increase of the superfluid fraction up to 50% in the case of extended macroscopical defects. We show also that this excess of superfluid fraction depends on the length of the complex network of grain boundaries in the system.  相似文献   

2.
Based on the integrable Gaudin model and local density approximation, we discuss the ground state of a one-dimensional trapped Fermi gas with imbalanced spin population, for an arbitrary attractive interaction. A phase separation state, with a polarized superfluid core immersed in an unpolarized superfluid shell, emerges below a critical spin polarization. Above it, coexistence of polarized superfluid matter and a fully polarized normal gas is favored. These two exotic states could be realized experimentally in highly elongated atomic traps, and diagnosed by measuring the lowest density compressional mode. We identify the polarized superfluid as having an Fulde-Ferrell-Larkin-Ovchinnikov structure, and predict the resulting mode frequency as a function of the spin polarization.  相似文献   

3.
This is the first of two papers in which microscopic expressions for the amplitudes and dispersion relations for hydrodynamic modes in an isotropic Fermi superfluid are derived. In this first paper we derive closed, decoupled, linearized kinetic equations for the bogolon spin density and total density in a Fermi superfluid with fluctuating superfluid velocity, and we discuss the form of the hydrodynamic equations that result from these equations.  相似文献   

4.
H. van Aggelen 《Molecular physics》2015,113(13-14):2018-2025
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn– Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange– correlation functional has no dependence on the superfluid density. The Kohn– Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.  相似文献   

5.
There has been much recent interest in how impurity scattering may affect the phases of the p-wave superfluid 3He. Impurities may be added to the otherwise absolutely pure superfluid by immersing it in aerogel. Some predictions suggest that impurity scattering may destroy orientational order and force all of the superfluid phases to have an isotropic superfluid density. In contrast to this, we present experimental data showing that the response of the A-like phase to superfluid flow is highly anisotropic, revealing a texture that is easily modified by flow.  相似文献   

6.
Path-integral Monte Carlo calculations of the superfluid density throughout 4He droplets doped with linear impurities are presented. After deriving a local estimator for the superfluid density distribution, we find a decreased superfluid response in the cylindrically symmetric region of the first solvation layer. The helium in this region has a superfluid transition temperature similar to that of a two-dimensional helium system and may be responsible for previously unexplained experimental Q-branch measurements.  相似文献   

7.
《中国物理 B》2021,30(6):60306-060306
The superfluid states of attractive Hubbard model in α–T_3 lattice are investigated. It is found that one usual needs three non-zero superfluid order parameters to describe the superfluid states due to three sublattices. When two hopping amplitudes are equal, the system has particle–hole symmetry. The flat band plays an important role in superfluid pairing near half filling. For example, when the filling factor falls into the flat band, the large density of states in the flat band favors superfluid pairing and the superfluid order parameters reach relatively large values. When the filling factor is in the gap between the flat band and upper band, the superfluid order parameters take small values due to the vanishing of density of states. The superfluid order parameters show nonmonotonic behaviors with the increase of filling factor. At last, we also investigate the edge states with open boundary conditions. It is shown that there exist some interesting edge states in the middle of quasi-particle bands.  相似文献   

8.
We study a superfluid on a lattice close to a transition into a supersolid phase and show that a uniform superflow in the homogeneous superfluid can drive the roton gap to zero. This leads to supersolid order around the vortex core in the superfluid, with the size of the modulated pattern around the core being related to the bulk superfluid density and roton gap. We also study the electronic tunneling density of states for a uniform superconductor near a phase transition into a supersolid phase. Implications are considered for strongly correlated superconductors.  相似文献   

9.
The heat capacity of pure 3He in low density aerogel is measured at 22.5 bars. The superfluid response is simultaneously monitored with a torsional oscillator. A slightly rounded heat capacity peak, 65 microK in width, is observed at the 3He-aerogel superfluid transition, T(ca). Subtracting the bulk 3He contribution, the heat capacity shows a Fermi-liquid form above T(ca). We can fit the heat capacity attributed to superfluid within the aerogel with a rounded BCS form accounting for 0.30 of the nonbulk fluid in the aerogel, or by assuming a substantial reduction in the superfluid order parameter. Both approaches are consistent with earlier superfluid density measurements.  相似文献   

10.
We derive the underlying finite temperature theory which describes Fermi gas superfluidity with population imbalance in a homogeneous system. We compute the pair formation temperature, superfluid transition temperature Tc, and superfluid density in a manner consistent with the standard ground state equations and, thereby, present a complete phase diagram. Finite temperature stabilizes superfluidity, as manifested by two solutions for Tc or by low T instabilities. At unitarity, the polarized state is an "intermediate-temperature superfluid."  相似文献   

11.
We study the expansion of a rotating, superfluid Fermi gas. The presence and absence of vortices in the rotating gas are used to distinguish the superfluid and normal parts of the expanding cloud. We find that the superfluid pairs survive during the expansion until the density decreases below a critical value. Our observation of superfluid flow in the expanding gas at 1/kFa=0 extends the range where fermionic superfluidity has been studied to densities of 1.2x10(11) cm(-3), about an order of magnitude lower than any previous study.  相似文献   

12.
13.
We calculate the meson screening mass in a pion superfluid in the framework of Nambu–Jona-Lasinio model. The minimum of the attractive quark potential is always located at the phase boundary of pion superfluid. Different from the temperature and baryon density effect, the potential at finite isospin density cannot be efficiently suppressed and the matter is always in a strongly coupled phase due to the Goldstone mode in the pion superfluid.  相似文献   

14.
I show using Landau theory that quenched dislocations can facilitate the supersolid to normal solid transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the supersolid to normal solid transition temperature T_{c}(L), superfluid density rho_{S}(T,L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.  相似文献   

15.
We analyze the dynamics of a condensate of ultracold atomic fermions following an abrupt change of the pairing strength. At long times, the system goes to a nonstationary steady state, which we determine exactly. The superfluid order parameter asymptotes to a constant value. We show that the order parameter vanishes when the pairing strength is decreased below a certain critical value. In this case, the steady state of the system combines properties of normal and superfluid states -- the gap and the condensate fraction vanish, while the superfluid density is nonzero.  相似文献   

16.
We study in a fully self-consistent approach the structure of a vortex in low density superfluid neutron matter. We determine that the matter density profile of a vortex shows a significant depletion in the region of the core, a feature never reported for a vortex state in a Fermi superfluid.  相似文献   

17.
Superfluidity in one and three dimensions has been studied for 4He fluid films adsorbed in nanopores which are straight channels and three-dimensionally connected pores, respectively. We observed the superfluid in one and three dimensions where thermal phonon wavelengths are much longer than the channel diameter and the period of the pore connection, respectively, and found that the superfluid onset depends on the pore connection. In the straight channels, the observed superfluid density disappears at a temperature far below the heat capacity anomaly of the Ginzburg-Landau transition, while in the pores connected in three dimension, the adsorbed 4He films show an evident three-dimensional transition where the superfluid onset occurs at the heat capacity peak.  相似文献   

18.
We present a theoretical study of the superfluidity and the corresponding collective modes in two-component atomic Fermi gases with ss-wave attraction and synthetic Rashba spin–orbit coupling. The general effective action for the collective modes is derived from the functional path integral formalism. By tuning the spin–orbit coupling from weak to strong, the system undergoes a crossover from an ordinary BCS/BEC superfluid to a Bose–Einstein condensate of rashbons. We show that the properties of the superfluid density and the Anderson–Bogoliubov mode manifest this crossover. At large spin–orbit coupling, the superfluid density and the sound velocity become independent of the strength of the ss-wave attraction. The two-body interaction among the rashbons is also determined. When a Zeeman field is turned on, the system undergoes quantum phase transitions to some exotic superfluid phases which are topologically nontrivial. For the two-dimensional system, the nonanalyticities of the thermodynamic functions and the sound velocity across the phase transition are related to the bulk gapless fermionic excitation which causes infrared singularities. The superfluid density and the sound velocity behave nonmonotonically: they are suppressed by the Zeeman field in the normal superfluid phase, but get enhanced in the topological superfluid phase. The three-dimensional system is also studied.  相似文献   

19.
We have observed phase separation between the superfluid and the normal component in a strongly interacting Fermi gas with imbalanced spin populations. The in situ distribution of the density difference between two trapped spin components is obtained using phase-contrast imaging and 3D image reconstruction. A shell structure is clearly identified where the superfluid region of equal densities is surrounded by a normal gas of unequal densities. The phase transition induces a dramatic change in the density profiles as excess fermions are expelled from the superfluid.  相似文献   

20.
We study the topological structure of the vortex system in a superfluid film. Explicit expressions for the vortex density and velocity field as functions of the superfluid order parameter are derived. The evolution of vortices is also studied from the topological properties of the superfluid order parameter field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号