首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent work on what has been called the phenomenon of heat flux bifurcation, that occurs at a boundary of a porous medium, or at an interface with a fluid clear of solid material, when a two-temperature model for the porous medium is employed, is discussed. An alternative interpretation of the situation, one in which the physics of the problem is emphasized, is presented.  相似文献   

2.
A regular two-parameter perturbation analysis based upon the boundary layer approximation is presented here to study the radiative effects of both first- and second-order resistances due to a solid matrix on the natural convection flows in porous media. Four different flows have been studied, those adjacent to an isothermal surface, a uniform heat flux surface, a plane plume and the flow generated from a horizontal line energy source on a vertical adiabatic surface. The first-order perturbation quantities are presented for all these flows. Numerical results for the four conditions with various radiation parameters are tabulated.  相似文献   

3.
A nonsimilar boundary layer analysis is presented for the problem of mixed convection in power-law type non-Newtonian fluids along horizontal surfaces with variable heat flux distribution. The mixed convection regime is divided into two regions, namely, the forced convection dominated regime and the free convection dominated regime. The two solutions are matched. Numerical results are presented for the details of the velocity and temperature fields. A discussion is provided for the effect of viscosity index on the surface heat transfer rate.  相似文献   

4.
A model for the convective flow in a fluidsaturated porous medium containing a reactive component is considered. This component undergoes an exothermic reaction (modelled by a first order mechanism) on an impermeable bounding surface, the resulting heat released driving the convective flow. Large Rayleigh number flow near a stagnation point is treated in detail by first considering the steady states. Multiple solution branches and critical points arising from a hysteresis bifurcation are identified. The form that these solution branches take depends on whether or not the effects of reactant consumption are included. An initialvalue problem is then discussed. This shows that both the lower (slow reaction) and upper (fast reaction) solution branches are stable (and the ultimate state of the system). When the parameter values are such that there is no steady state, the solution develops a finitetime singularity, the nature of which is analysed.  相似文献   

5.
A general mathematical model of steady-state transport driven by spatially non-local driving potential differences is proposed. The porous medium is considered to be a network of short-, medium-, and long-range interstitial channels with impermeable walls and at a continuum of length scales, and the flow rate in each channel is assumed to be linear with respect to the pressure difference between its ends. The flow rate in the model is thus a functional of the non-local driving pressure differences. As special cases, the model reduces to familiar forms of transport equations that are commonly used. An important situation arises when the phenomenon is almost, but not quite, locally dependent. The one-dimensional form of the model discussed here can be extended to multiple dimensions, temporal non-locality, and to heat, mass, and momentum transfer.  相似文献   

6.
In this note, heat transfer over a stretching sheet with mass transfer in a porous medium is revisited. Analytical solutions are presented for two cases including a prescribed power-law wall temperature case and a prescribed power-law wall heat flux case. The solutions are expressed by the Kummer’s function. Closed-form solutions are found and presented for some special parameters. The solutions might offer more insights of the heat transfer characteristics compared with the numerical solutions.  相似文献   

7.
A numerical study is reported here to investigate the drying of saturated deformable porous rectangular plate based on the Darcy–Brinkman extended model. All walls of the plate are maintained to a convective heat flux as well as the top and bottom faces are also subjected to a mass flux. The model for the energy transport is based on the local thermodynamic equilibrium between the fluid and the solid phases. The lattice Boltzmann method is used for solving the governing differential equations system. A comprehensive analysis of the influence of the Poisson’s coefficient, the Young’s modulus and the permeability on macroscopic fields is investigated throughout this work.  相似文献   

8.
It is well known that multiphase flow in porous media exhibits hysteretic behaviour. This is caused by different fluid–fluid behaviour if the flux reverses. For example, for flow of water in unsaturated soils the process of imbibition and drainage behaves differently. In this paper we study a new model for hysteresis that extends the current playtype hysteresis model in which the scanning curves between drainage and imbibition are vertical. In our approach the scanning curves are non-vertical and can be constructed to approximate experimentally observed scanning curves. Furthermore our approach does not require any book-keeping when the flux reverses at some point in space. Specifically, we consider the problem of horizontal redistribution to illustrate the strength of the new model. We show that all cases of redistribution can be handled, including the unconventional flow cases. For an infinite column, our analysis involves a self-similar transformation of the equations. We also present a numerical approach (L-scheme) for the partial differential equations in a finite domain to recover all redistribution cases of the infinite column provided time is not too large.  相似文献   

9.
Steady and pulsatile flow and heat transfer in a channel lined with two porous layers subject to constant wall heat flux under local thermal non-equilibrium (LTNE) condition is numerically investigated. To do this, a physical boundary condition in the interface of porous media and clear region of the channel is derived. The objective of this work is, first, to assess the effects of local solid-to-fluid heat transfer (a criterion indicating on departure from local thermal equilibrium (LTE) condition), solid-to-fluid thermal conductivity ratio and porous layer thickness on convective heat transfer in steady condition inside a channel partially filled with porous media; second, to examine the impact of pulsatile flow on heat transfer in the same channel. The effects of LTNE condition and thermal conductivity ratio in pulsatile flow are also briefly discussed. It is observed that Nusselt number inside the channel increases when the problem is tending to LTE condition. Therefore, careless consideration of LTE may lead to overestimation of heat transfer. Solid-to-fluid thermal conductivity ratio is also shown to enhance heat transfer in constant porous media thickness. It is also revealed that an increase in the amplitude of pulsation may result in enhancement of Nusselt number, while Nusselt number has a minimum in a certain frequency for each value of amplitude.  相似文献   

10.
Effective Flux Boundary Conditions for Upscaling Porous Media Equations   总被引:3,自引:0,他引:3  
We introduce a new algorithm for setting pressure boundary conditions in subgrid simulations of porous media flow. The algorithm approximates the flux in the boundary cell as the flux through a homogeneous inclusion in a homogeneous background, where the permeability of the inclusion is given by the cell permeability and the permeability of the background is given by the ambient effective permeability. With this approximation, the flux in the boundary cell scales with the cell permeability when that permeability is small, and saturates at a constant value when that permeability is large. The flux conditions provide Neumann boundary conditions for the subgrid pressure. We call these boundary conditions effective flux boundary conditions (EFBCs). We give solutions for the flux through ellipsoidal inclusions in two and three dimensions, assuming symmetric tensor permeabilities whose principal axes align with the axes of the ellipse. We then discuss the considerations involved in applying these equations to scale up problems in geological porous media. The key complications are heterogeneity, fluctuations at all length scales, and boundary conditions at finite scales.  相似文献   

11.
The objective of this article is to highlight certain features of a number of coefficients that appear in models of phenomena of transport in anisotropic porous media, especially the coefficient of dispersion the second-rank tensor D ij , and the dispersivity coefficient, the fourth-rank tensor a ijkl , that appear in models of solute transport. Although we shall focus on the transport of mass of a dissolved chemical species in a fluid phase that occupies the void space, or part of it, the same discussion is also applicable to transport coefficients that appear in models that describe the advective mass flux of a fluid and the diffusive transport of other extensive quantities, like heat. The case of coupled processes, e.g. the simultaneous transport of heat and mass of a chemical species, are also considered. The entire discussion will be at the macroscopic level, at which a porous medium domain is visualized as a homogenized continuum.  相似文献   

12.
The classic constitutive equation relating fluid flux to a gradient in potential (pressure head plus gravitational energy) through a porous medium was discovered by Darcy in the mid 1800s. This law states that the flux is proportional to the pressure gradient. However, the passage of the fluid through the porous matrix may cause a local variation of the permeability. For example, the flow may perturb the porous formation by causing particle migration resulting in pore clogging or chemically reacting with the medium to enlarge the pores or diminish the size of the pores. In order to adequately represent these phenomena, we modify the constitutive equations by introducing a memory formalism operating on both the pressure gradient–flux and the pressure–density variations. The memory formalism is then represented with fractional order derivatives. We perform a number of laboratory experiments in uniformly packed columns where a constant pressure is applied on the lower boundary. Both homogeneous and heterogeneous media of different characteristic particle size dimension were employed. The low value assumed by the memory parameters, and in particular by the fractional order, demonstrates that memory is largely influencing the experiments. The data and theory show how mechanical compaction can decrease permeability, and consequently flux.  相似文献   

13.
A theory is developed providing a rational framework for spatial scale- dependent fluid’s flow and heat transfer, and mass of a component migrating with it through porous media. Introducing the assumption of a non-Brownian type motion and referring to asymptotic expansion in powers of a small defined parameter, we develop a novel approach associated with macroscopic balance equations obtained by averaging over a Representative Elementary Volume (REV). We prove that these equations can be decomposed into a primary part that refers to the REV length scale and a secondary part valid at a length scale smaller than that of the corresponding REV length. Further to our previous development, we obtain two general forms of the primary and secondary macroscopic balance equations. One is based on the assumption that the advective flux of the extensive quantity is dominant over that of the dispersive flux, whereas the other disregards this assumption. Moreover we also introduce the primary and secondary macroscopic forms for the fluid heat- transfer equation. Considering a Newtonian fluid, the resulting primary Navier–Stokes equation can vary from a nonlinear wave equation to a drag-dominant equation at the fluid–solid interface (Darcy’s law). The secondary momentum balance equation describes a wave equation governing the concurrent propagation of the intensive momentum and the dispersive momentum flux, deviating from their corresponding average terms. The primary macroscopic fluid heat-transfer equation accounts for advective and dispersive heat fluxes and the secondary macroscopic heat-transfer equation involves the simultaneous advection of heat deviating from its corresponding intensive average quantity. The primary macroscopic solute mass balance equation accounts for advection and hydrodynamic dispersion. The secondary macroscopic component mass balance equation is in the form of pure advection governing migration of the deviation from the average component concentration. At this stage, we focus on establishing the viability of the developed theory. We do this by arguing that field observations of motion at small spatial scales are coherent with the hyperbolic characteristics of the secondary balance equations. Field observations under natural gradient flow conditions show excessive high concentration (average of 50 mg/L) of colloids under land irrigated by sewage effluents. We argue that this displacement of condensed colloidal parcels manifests the theoretical findings for the smaller spatial scale. Further evidence show the accumulation of particles moving behind the front of an emitted shockwave. We consider this as an experimental proof reinforcing the argument that colloidal migration is subject to the action of a shockwave in the fluid and pure advection transport, governed by the respective suggested hyperbolic macroscopic balance equations of fluid momentum and component mass at the smaller spatial scale.  相似文献   

14.
The objective of this article is to make use of the phenomenological approach to construct models for the transport of extensive quantities, such as mass of a fluid phase, mass of a component of a fluid phase, momentum of a phase and energy, in porous medium domains. Special attention is devoted to express the fluxes of these extensive quantities, especially the non-advective ones, as functions of their relevant driving forces, obeying the principle of minimum entropy production. It is shown that for each extensive quantity, we have a linear diffusive flux term, a non-linear diffusive term, and a dispersive flux term. The latter is shown to be proportional to the velocity squared. In each case, the number of moduli that describe fluid and porous matrix properties is determined. The momentum balance equation for a porous medium domain, which is the “motion equation,” is analyzed and simplified for special cases, leading to Darcy’s law and to Brinkman’s equation.  相似文献   

15.
We present a modelization of the heat and mass transfers within a porous medium, which takes into account phase transitions. Classical equations are derived for the mass conservation equation, whereas the equation of energy relies on an entropy balance adapted to the case of a rigid porous medium. The approximation of the solution is obtained using a finite volume scheme coupled with the management of phase transitions. This model is shown to apply in the case of an experiment of heat generation in a porous medium. The vapor phase appearance is well reproduced by the simulations, and the size of the two-phase region is correctly predicted. A result of this study is the evidence of the discrepancy between the air – water capillary and relative permeability curves and water – water vapor ones.  相似文献   

16.
17.
In this work we provide numerical validation of the particle migration during flow of concentrated suspension in asymmetric T-junction bifurcation channel observed in a recent experiment [1]. The mathematical models developed to explain particle migration phenomenon basically fall into two categories, namely, suspension balance model and diffusive flux model. These models have been successfully applied to explain migration behavior in several two-dimensional flows. However, many processes often involve flow in complex 3D geometries. In this work we have carried out numerical simulation of concentrated suspension flow in 3D bifurcation geometry using the diffusive flux model. The simulation method was validated with available experimental and theoretical results for channel flow. After validation of the method we have applied the simulation technique to study the flow of concentrated suspensions through an asymmetric T-junction bifurcation composed of rectangular channels. It is observed that in the span-wise direction inhomogeneous concentration distribution that develops upstream persists throughout the inlet and downstream channels. Due to the migration of particles near the bifurcation section there is almost equal partitioning of flow in the two downstream branches. The detailed comparison of numerical simulation results is made with the experimental data.  相似文献   

18.
Radon emanation which is the fraction of radon-222 atoms released in the connected pore space of a porous material, increases when the water content increases because of the low recoil range of this atom in water compared with air. This complex phenomenon is studied using reconstructed porous media and random packings where the phase distribution is obtained by a lattice Boltzmann technique incorporating interfacial tension and wetting. The influence of the pore structure, of the recoil range and of saturation, is systematically studied. The numerical results are in good agreement with data from uranium mine tailings.  相似文献   

19.
Flow of a fluid through a porous medium is considered with allowance for heat conduction. Both fronts at which the liquid is transformed into steam or a liquid-steam mixture and fronts with inverse transformations are studied. The evolutionarity conditions of these fronts are considered and a model of their structure is proposed.  相似文献   

20.
1-D Modeling of Hydrate Depressurization in Porous Media   总被引:8,自引:0,他引:8  
A thermal, three-phase, one-dimensional numerical model is developed to simulate two regimes of gas production from sediments containing methane hydrates by depressurization: the dissociation-controlled regime and the flow-controlled regime. A parameter namely dissociation-flow time-scale ratio, R, is defined and employed to identify the two regimes. The numerical model uses a finite-difference scheme; it is implicit in water and gas saturations, pressure and temperature, and explicit in hydrate saturation. The model shows that laboratory-scale experiments are often dissociation-controlled, but the field-scale processes are typically flow-controlled. Gas production from a linear reservoir is more sensitive to the heat transfer coefficient with the surrounding than the longitudinal heat conduction coefficient, in 1-D simulations. Gas production is not very sensitive to the well temperature boundary condition. This model can be used to fit laboratory-scale experimental data, but the dissociation rate constant, the multiphase flow parameters and the heat transfer parameters are uncertain and should be measured experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号