首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
LPEIs, which are efficient DNA transfection agents, were found to be far less effective for the delivery of siRNAs. Here, two amphiphilic triblock copolymers LPEI(50) -b-PPG(36) -b-LPEI(50) (2) and LPEI(14) -b-PPG(68) -b-LPEI(14) (4) have been synthesized. The transfection assays showed that compound 2 was efficient for DNA transfection whilst it was almost inactive for siRNA delivery. In contrast, polymer 4 was inefficient for DNA transfection while it showed capabilities for siRNA delivery. Taken together, our results indicate that the properties required for DNA and siRNA delivery are different. Moreover, we show that introduction of a hydrophobic segment that allows self-assembly confers siRNA delivery capacities.  相似文献   

2.
Synthesis of poly(styrene-b-tetrahydrofuran (THF)-b-styrene) triblock copolymers was performed by transformation from living cationic into living radical polymerization, using 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO) as a transforming agent. Sodium 4-oxy-TEMPO, derived from 4-hydroxy-TEMPO, reacted with the living poly(THF), which was prepared by cationic polymerization of THF using trifluoromethanesulfonic acid anhydride as an initiator, resulting in quantitative formation of the poly(THF) with TEMPO at both the chain ends. The resulting polymers were able to serve as a polymeric counter radical for the radical polymerization of styrene by benzoyl peroxide, to give the corresponding triblock copolymer in quantitative efficiency. The polymerization was found to proceed in accordance with a living mechanism, because the conversion of styrene linearly increased over time, and the molar ratio of styrene to THF units in the copolymer also increased as a result of increasing the conversion. The TEM pictures demonstrated that the resulting copolymers promoted microphase segregation. It was found that the films of these copolymers showed contact angles intermediate between those of poly(THF) and of polystyrene. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2059–2068, 1998  相似文献   

3.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

5.
This review focuses on poly(2-oxazoline) containing triblock copolymers and their applications. A detailed overview of the synthetic techniques is provided. Triblock copolymers solely based on poly(2-oxazoline)s can be synthesized by sequential monomer addition utilizing mono- as well as bifunctional initiators for the cationic ring-opening polymerization of 2-oxazolines. Crossover and coupling techniques enable access to triblock copolymers comprising, e.g., polyesters, poly(dimethylsiloxane)s, or polyacrylates in combination with poly(2-oxazoline) based segments. Besides systematic studies to develop structure property relationships, these polymers have been applied, e.g., in drug delivery, as (functionalized) vesicles, in segmented networks or as nanoreactors.  相似文献   

6.
A novel amine‐functionalized polycarbonate was synthesized and its excellent gene transfection ability in vitro is demonstrated. In the framework of adapting the cationic polycarbonate for in vivo gene delivery applications, here the design and synthesis of biodegradable block copolymers of poly(ethylene glycol) (PEG) and amine‐functionalized polycarbonate with a well‐defined molecular architecture and molecular weight is achieved by metal‐free organocatalytic ring‐opening polymerization. Copolymers in triblock cationic polycarbonate‐block‐PEG‐block‐cationic polycarbonate and diblock PEG‐block‐cationic polycarbonate configurations, in comparison with a non‐PEGylated cationic polycarbonate control, are investigated for their influence on key aspects of gene delivery. Among the polymers with similar molecular weights and N content, the triblock copolymer exhibit more favorable physicochemical (i.e., DNA binding, size, zeta‐potential, and in vitro stability) and biological (i.e., cellular uptake and luciferase reporter gene expression) properties. Importantly, the various cationic polycarbonate/DNA complexes are biocompatible, inducing minimal cytotoxicities and hemolysis. These results suggest that the triblock copolymer is a more useful architecture in future cationic polymer designs for successful systemic therapeutic applications.  相似文献   

7.
A series of well‐defined amphiphilic triblock copolymers [polyethylene glycol monomethyl ether]‐block‐poly(ε‐caprolactone)‐block‐poly[2‐(dimethylamino)ethyl methacrylate] (mPEG‐b‐PCL‐b‐PDMAEMA or abbreviated as mPEG‐b‐PCL‐b‐PDMA) were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization. The chemical structures and compositions of these copolymers have been characterized by Fourier transform infrared spectroscopy, 1H NMR, and thermogravimetric analysis. The molecular weights of the triblock copolymers were obtained by calculating from 1H NMR spectra and gel permeation chromatography measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by fluorescence probe method and transmission electron microscopy, which indicated that these amphiphilic triblock copolymers possess distinct pH‐dependent critical aggregation concentrations and can self‐assemble into micelles or vesicles in PBS buffer solution, depending on the length of PDMA in the copolymer. Agarose gel retardation assays demonstrated that these cationic nanoparticles can effectively condense plasmid DNA. Cell toxicity tests indicated that these triblock copolymers displayed lower cytotoxicity than that of branched polyethylenimine with molecular weight of 25 kDa. In addition, in vitro release of Naproxen from these nanoparticles in pH buffer solutions was conducted, demonstrating that higher PCL content would result in the higher drug loading content and lower release rate. These biodegradable and biocompatible cationic copolymers have potential applications in drug and gene delivery. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1079–1091, 2010  相似文献   

8.
Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.  相似文献   

9.
The synthesis of poly(2‐ethyl‐2‐oxazoline)‐b‐linear poly(ethylenimine) (PEtOx‐b‐LPEI) copolymers by selective basic hydrolysis of PEtOx‐b‐poly(2‐H‐2‐oxazoline) (PEtOx‐b‐PHOx) is described. For this purpose, an easy method for the preparation of the 2‐H‐2‐oxazoline (HOx) monomer was developed. Based on the microwave‐assisted polymerization kinetics for this monomer, PEtOx‐b‐PHOx copolymers were prepared. Subsequently, the block copolymers were selectively hydrolyzed to PEtOx‐b‐LPEI under basic conditions. The success of the polymerizations and subsequent post‐polymerization reactions was demonstrated by 1H NMR spectroscopy and MALDI‐TOF‐MS investigations of the obtained polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
ABA block-copolymers in which the A segments are capable of forming complexes and B is a non-complexing segment, have been used to prepare polymer materials with properties that can be changed by adding a complexing agent. The complex forming segments were poly(ethylene oxide) (PEO), linear polyethylenimine (LPEI) and poly(N-tert-butylethylenimine) (PTBEI). Commercially available liquid ABA block-copolymers, in which A is PEO and B is poly(propylene oxide), were investigated with high molar mass poly(acrylic acid) (PAA) as the complexing agent for PEO. It was found that the mixtures containing 3 to 7 wt.-% of PAA, showed a marked shear-thickening behavior leading eventually to gelation. This was attributed to the transformation of intramolecular polymer complexes, at low shear rates, to intermolecular complexes, at high shear rates, due to the chain stretching of PAA. ABA copolymers in which A is LPEI or PTBEI and B polytetra-hydrofuran (PTHF), were prepared. Complexation of these copolymers with low molecular weight poly-acids or PAA in polar and non-polar solvents as well as in bulk have been investigated. ABA copolymers in which A is PEO and B a PTHF segment were prepared. These block-copolymers show two melting points: one at appr. 55°C, due to the PEO segments, and one at appr. 30°C due to the PTHF. Upon addition of alkali metal salts such as sodium iodide or sodium thiocyanate, complexes with PEO are formed and as a consequence, the melting point of the PEO segments shifts to appr. 160°C. The complexed materials behave as thermoplastic elastomers up to that temperature.  相似文献   

11.
The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent.  相似文献   

12.
Large macrocyclic poly(chloroethyl vinyl ether)s (PCEVE)s of controlled ring size and narrow distribution were synthesized by a ring-closure process involving the intramolecular formation of acetal linkages between the two external blocks of linear ABC triblock precursors prepared by living cationic polymerization. The corresponding shape-persistent ring P(CEVE-g-PS) combs having macrocyclic poly(chloroethyl vinyl ether) backbones and polystyrene side chains were then synthesized by a "grafting onto" technique and characterized by size exclusion chromatography (SEC) analysis and atomic force microscopy (AFM) imaging of isolated molecules. Quantitative hydrolysis of the acetal linkages of the macrocyclic PCEVE backbone in acidic conditions yields the linear poly(chloroethyl vinyl ether)-g-polystyrene) homologue and allows a direct comparison of the characteristics and dimensions of cyclic and linear comb architecture. The influence of the chain architecture and PS graft dimensions on the dilute tetrahydrofuran (THF) solution properties, radius of gyration, and hydrodynamic radius of the comb copolymers is also studied and compared to data reported for linear and cyclic polystyrene chains.  相似文献   

13.
ABA triblock copolymers were synthesized using two polymerization techniques, polycondensation, and atom transfer radical polymerization (ATRP). A telechelic polymer was synthesized via polycondensation, which was then functionalized into a difunctional ATRP initiator. Under ATRP conditions, outer blocks were polymerized to form the ABA triblock copolymer. Six types of samples were prepared based on a poly(ether ether ketone) or poly(arylene ether sulfone) center block with either poly(methyl methacrylate), poly(pentafluorostyrene), or poly(ionic liquid) outer blocks. As polycondensation results in polymers with broad molecular weight distribution (MWD), the center of these triblock copolymers are disperse, while the outside blocks have narrow MWD due to the control afforded from ATRP. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 228–238  相似文献   

14.
The present contribution is focused on feasibility of using comb‐like copolymers of polyethylenimine with poly(2‐ethyl‐2‐oxazoline) (LPEI‐comb‐PEtOx) with varying grafting densities and degrees of polymerization of PEI and PEtOx to deliver DNA molecules into cells. The copolymers form small and well‐defined particles at elevated temperatures, which are used as platforms for binding and condensing DNA. The electrostatic interactions between particles and DNA result in formation of sub‐100 nm polyplex particles of narrow size distribution and different morphology and structure. The investigated gene delivery systems exhibit transfection efficiency dependent on the copolymer chain topology, shape of the polyplex particles, and internalization pathway. Flow cytometry shows enhanced transfection efficiency of the polyplexes with elongated and ellipsoidal morphology. The preliminary biocompatibility study on a panel of human cell lines shows that pure copolymers and polyplexes thereof are practically devoid of cytotoxicity.  相似文献   

15.
The crystallization behavior of a series of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymers (Pluronics) was investigated using time-resolved small-angle X-ray scattering (SAXS), thermal analysis, and polarized optical microscopy. For comparison, a PEO homopolymer, PEO3K, was also included. Time-resolved SAXS during the crystallization of PEO3K shows a typical “two-step” process, i.e., in the initial stage, a metastable crystal with nonintegral folding (NIF) structure forms first, then, it transforms into integral folding (IF) structures, the IF(0) and the IF(1). In contrast with PEO3K, the PEO–PPO–PEO triblock copolymers show a “one-step” crystallization process, i.e., the PEO blocks crystallize directly into the final state and do not change with time. In thermal analysis, only one major solid–melt transition is observed during isothermal crystallization and subsequent melting for triblock copolymers. In the full temperature range, a linear crystal growth is observed. The crystal growth rates monotonously decrease with crystallization temperatures. Notches or breaks due to the NIF–IF transition as clearly seen for PEO3K cannot be recognized for Pluronics. Based on these results, we conclude that the crystallization of PEO–PPO–PEO triblock copolymers follows a “one-step” process; no metastable structure serving as an intermediate state is formed during the crystallization process within the time scale of the current experiments (<120 min).  相似文献   

16.
Amphiphilic biodegradable (PCL-PEG-PCL) triblock copolymers have been successfully prepared by the ring opening polymerization of ?-caprolactone (CL) in the presence of poly(ethylene glycol) (PEG) at 80°C employing Maghnite-H+ a non-toxic Montmorillonite clay as catalyst. Maghnite-H+ reacts as a solid source of protons to induce ?-caprolactone polymerization. The triblock architecture, molecular weight and thermal properties of the copolymers were characterized by NMR spectra, GPC and DSC analyses. The effect of Maghnite-H+ proportion and PEGs on the rate of copolymerization and on average molecular weight of resulting copolymers was studied. A cationic mechanism for the copolymerization reaction was proposed.  相似文献   

17.
用端氨基聚乳酸做引发剂,在DMF中引发Nε-苄氧羰基-L-赖氨酸酐(Lys(Z)-NCA)聚合,合成了端氨基聚(Nε-苄氧羰基-L-赖氨酸)-b-聚乳酸两嵌段共聚物.以端羧基聚乙二醇经NHS活化与端氨基聚(Nε-苄氧羰基-L-赖氨酸)-b-聚乳酸偶联,合成了聚(乳酸-b-Nε-苄氧羰基-L-赖氨酸-b-乙二醇)三嵌段聚合物.利用IR、1H-NMR、GPC和TEM对它们的结构、形态进行了表征,结果表明,所合成的分子量可控、分子量分布窄(Mw/Mn=1.07)的嵌段共聚物,酰化反应产率达70%以上.同时聚乙二醇和Nε-苄氧羰基-L-赖氨酸被引入到聚乳酸主链中,在聚合物侧链脱保护后有望改善聚乳酸的细胞亲和性。  相似文献   

18.
张方  张航天  杨甜  孔波  郭安儒  章琦  吴一弦 《高分子学报》2020,(1):98-116,I0004
采用2-氯-2,4,4-三甲基戊烷或对二枯基氯为引发剂和TiCl4或FeCl3为共引发剂,引发异丁烯(IB)可控/活性正离子聚合与官能端基转化,设计合成不同分子量及窄分子量分布的端基官能化聚异丁烯,如双端烯丙基溴官能化聚异丁烯(Br-PIB-Br)或双端烯丙基胺官能化聚异丁烯(H2N-PIB-NH2).采用烯丙基溴/高氯酸银体系引发四氢呋喃(THF)开环聚合,合成聚四氢呋喃活性链(PTHF+).进一步通过将IB可控/活性正离子聚合与THF可控/活性正离子开环聚合2种方法相结合,设计合成2种新型官能化聚四氢呋喃-b-聚异丁烯-b-聚四氢呋喃(PTHF-b-PIB-b-PTHF)三嵌段共聚物:(1)以上述Br-PIB-Br为大分子引发剂,在AgClO4作用下引发THF活性正离子开环聚合,采用水终止活性链端,设计合成双端为羟基的HO-PTHF-b-PIB-b-PTHF-OH三嵌段共聚物(简称:FIBF-OH);(2)以上述合成的PTHF+活性链与H2NPIB-NH2链端胺基发生高效亲核取代反应,设计合成中间链段连接点含―NH―官能基团的PTHF-b-HNPIB-NH-b-PTHF三嵌段共聚物(简称:FIBF-NH).在上述三嵌段共聚物中,极性PTHF链段与非极性PIB链段的热力学不相容,导致其呈现明显的微相分离,且微观形态与共聚组成相关.PTHF均聚物易结晶,在上述共聚物中由于PTHF链段单端受限致其结晶性减弱.三嵌段共聚物分子链的中间连接点含―NH―官能基团,具有更强的氢键作用,促进PTHF链段重排并结晶,易形成更紧密的超分子网络结构,导致即使在PTHF链段相对分子量为0.7 kg·mol^-1时仍具有较强的结晶性,且结晶熔融温度明显提高.此外,由于FIBF-NH中形成超分子网络结构,使材料具有优异的自修复性能,材料表面的切痕在常温下10 min后可以完全自愈合.本文设计合成的新型官能化PTHF-b-PIB-b-PTHF三嵌段共聚物兼具有PTHF与PIB的优良性能,在生物医用、智能修复等功能材料领域具有潜在的应用前景.  相似文献   

19.
Poly[styrene (ST)-tetrahydrofuran (THF)-2-methyl-2-oxazoline(MeOz)] triblock and graft copolymers were prepared by ionic polymerizations. Poly(ST-THF) graft copolymers were synthesized by coupling of ST-4-vinylpyridine (4VP) copolymer with a large excess of PTHF dication. The ion coupling of PST dianion with PTHF dication was accompanied by the side reaction (abstraction of α proton of oxonium ion). After tosylation of terminal hydroxyl groups of PTHF blocks, cationic copolymerizations of MeOz with poly(ST-THF) block and graft copolymers were carried out, and characteristics of produced copolymers were investigated in some detail.  相似文献   

20.
An (AB)n-type multiblock copolymer containing alternating poly(l-lactide) (PLLA) and poly(dimethyl siloxane) (PDMS) segments was synthesized by chain extension of hydroxyltelechelic PLLA-PDMS-PLLA triblock copolymers, which were prepared by the ring-opening polymerization of l-lactide initiated by α,ω-functionalized hydroxyl poly(dimethyl siloxane), using 1,6-hexamethylene diisocyanate as a chain extender. The triblock and the multiblock copolymers were characterized by FT-IR, 1H NMR and GPC. From the results of thermal analysis, two glass transition temperatures which were measured by DSC showed the occurrence of phase separation phenomena in the triblock and multiblock copolymers because of the difference of solubility parameters between PLLA and PDMS segments. The effect of the chemical composition of the triblock copolymers, including the Mw and the constitutive segment chain length of the macrodiol, on the development of the Mw of the multiblock was discussed based on diffusion effect. Furthermore, the consumption of the isocyanate groups was determined by FT-IR to investigate the dependence of the reaction kinetics of the urethane formation on the chemical composition of the triblock copolymer. The results reveal that the order of the chain extension reaction depended on the Mw of the triblock copolymer: a second order reaction was transformed into a third reaction as the Mw of the triblock copolymer increased from 7000 to 25,000 (g/mol) perhaps because of the inhibition of the formation of an active complex involved in the catalyzed-urethane reaction by the polymer chain aggregation. Finally, the mechanical properties of the multiblock copolymers demonstrated that the introduction of the extremely flexible PDMS segment substantially improved the elongation at breakage, and the tensile strength and the tensile modulus declined due to the intrinsic elasticity of such segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号