首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The radiation effect in the presence of a uniform transverse magnetic field on steady free convection flow with variable viscosity is investigated. The fluid viscosity is assumed to vary as the reciprocal of a linear function of temperature. Boundary layer equations are derived. The resulting approximate non-linear ordinary differential equations are solved linearly and nonlinearly by shooting methods. The velocity and temperature profiles are shown, and the skin friction on the plate and heat transfer coefficient are presented and discussed. The results of the present study show that in the presence of magnetic field, as the radiation parameter increases the temperature increases, but the velocity decreases.  相似文献   

2.
An analysis is presented for the problem of free convection with mass transfer flow for a micropolar fluid via a porous medium bounded by a semi-infinite vertical porous plate in the presence of a transverse magnetic field. The plate moves with constant velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation law. A uniform magnetic field acts perpendicularly to the porous surface in which absorbs the micropolar fluid with a suction velocity varying with time. Numerical results of velocity distribution of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Also, the results of the skin-friction coefficient, the couple stress coefficient, the rate of the heat and mass transfers at the wall are prepared with various values of fluid properties and flow conditions.  相似文献   

3.
Raptis  A.  Perdikis  C. 《Transport in Porous Media》2004,57(2):171-179
The unsteady natural convection flow of a viscous and incompressible fluid through a porous medium with high porosity bounded by a vertical infinite stationary plate in the presence of radiation has been investigated. The fluid is assumed to be a gray, emitting and absorbing radiation, but non-scattering medium. The effects of the radiation parameter, Grashof number and permeability parameter of the medium on the velocity field as well as the effects of the radiation parameter and Prandtl number on the temperature field have been included in the analysis.  相似文献   

4.
The problem of unsteady free convection heat transfer from a one-dimensional (parallel) flow along an infinite vertical flat plate embedded in a thermally stratified fluid-saturated porous medium is considered. Flows are induced by a sudden change in the arbitrary temporal plate temperature. By a formal reduction of the corresponding boundary value problems to well-known Fourier heat conduction problems, analytical solutions of the Darcy and energy equations are obtained. Several special cases are discussed in detail.  相似文献   

5.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

6.
An analysis is presented to investigate the effects of temperature-dependent viscosity, thermal dispersion, Soret number and Dufour number on non-Darcy MHD free convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a vertical isothermal surface embedded in a saturated porous medium. The governing partial differential equations are transferred into a system of ordinary differential equations, which are solved numerically using a fourth order Runge–Kutta scheme with the shooting method. Comparisons with previously published work by Hong and Tien [Hong, J. T. and Tien, C. L.: 1987, Int. J. Heat Mass Transfer 30, 143–150] and Sparrow et al. [Sparrow, E. M. et al.: 1964, AIAA J. 2 652–659] are performed and good agreement is obtained. Numerical results of the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and concentration profiles are presented for different physical parameters.  相似文献   

7.
The effect of mass diffusion of chemical species with first-order reaction on peristaltic motion of an incompressible Jeffrey fluid has been investigated. The fluid flows through vertical porous media in the gap between concentric tubes with heat and mass transfer. The inner tube is uniform, while the outer one is a non-uniform tube has a sinusoidal wave traveling down its wall. A perturbation solution, under long-wavelength assumption, is obtained which satisfies the momentum, energy, and concentration equations for the case of small porosity parameter. Numerical results for the behaviors of pressure rise and frictional force per wavelength as well as for the skin friction, Nusselt number, and Sherwood number with other physical parameters are obtained. Several graphs for these results of physical interest are displayed and discussed in detail.  相似文献   

8.
The paper presents an investigation of the influence of thermal radiation and viscous dissipation on the mixed convective flow due to a vertical plate immersed in a non-Darcy porous medium saturated with a Newtonian fluid. The physical properties of the fluid are assumed to be constant. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically using a shooting method. The results are analyzed for the effects of various physical parameters such as viscous dissipation, thermal radiation, mixed convection parameters, and the modified Reynolds number on dynamics. The heat transfer coefficient is also tabulated for different values of the physical parameters.  相似文献   

9.
In this investigation, we intend to present the influence of the prominent Soret effect on double-diffusive free convection heat and mass transfer in the boundary layer region of a semi-infinite inclined flat plate in a nanofluid saturated non-Darcy porous medium. The transformed boundary layer ordinary differential equations are solved numerically using the shooting and matching technique. Consideration of the nanofluid and the coupled convective process enhanced the number of non-dimensional parameters considerably thereby increasing the complexity of the present problem. A wide range of parameter values are chosen to bring out the effect of Soret parameter on the free convection process with varying angle of inclinations making the wall geometry from vertical to horizontal plate. The effects of angle of inclination and Soret parameter on the flow, heat and mass transfer coefficients are analyzed. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles, local wall temperature, local nanoparticle concentration, and local wall concentration reveal interesting phenomenon, and some of these qualitative results are presented through the plots.  相似文献   

10.
11.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

12.
Thermal instability in a horizontal porous medium saturated with temperature-dependant viscous fluid has been considered, and the effect of time-periodic temperature modulation has been investigated. The amplitudes of temperature modulation at the lower and upper surfaces are considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weak non-linear stability analysis has been performed for the stationary mode of convection, and heat transport in terms of the Nusselt number, which is governed by the non-autonomous Ginzburg–Landau equation, is calculated. The effects of thermo-rheological parameter, amplitude and frequency of modulation, thermo-mechanical anisotropies, and Vadasz number on heat transport have been analyzed and depicted graphically. It is found that an increment in the value of thermo-rheological parameter results in the enhancement of heat transport in the system. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system.  相似文献   

13.
The problem of natural convective heat transfer for a non-Newtonian fluid from an impermeable vertical plate embedded in a fluid-saturated porous medium has been analyzed. Non-Darcian, radiative and thermal dispersion effects have been considered in the present analysis. The governing boundary layer equations and boundary conditions are cast into a dimensionless form and simplified by using a similarity transformation. The resulting system of equations is solved by using a double shooting Runge–Kutta method. The effect of viscosity index n, the conduction–radiation parameter R, the non-Darcy parameter Gr*, the thermal dispersion parameter Ds and the suction/injection parameter fw on the fluid velocities, temperatures and the local Nusselt number are discussed.  相似文献   

14.
The fully developed flow and H1 heat transfer in a polygonal duct filled with a Darcy–Brinkman medium is studied. The efficient method of boundary collocation is used. The problem is governed by the duct shape and a non-dimensional parameter s which characterizes the inverse square root of permeability. Asymptotic formulas for small and large s are derived.  相似文献   

15.
The problem of melting from a vertical flat plate embedded in a porous medium is studied. The main focus is to determine the effect of mixed convection flow in the liquid phase on the melting phenomenon. Both aiding and opposing flows are considered. The conservation equations that govern the problem are reduced to a system of nonlinear ordinary differential equations. The governing equations are solved numerically. Numerical results are obtained for the temperature and flow fields in the melting region. The melting phenomenon decreases the local Nusselt number at the solid–liquid interface.  相似文献   

16.
Unsteady natural convection flow in a two-dimensional square cavity filled with a porous material has been studied. The flow is initially steady where the left-hand vertical wall has temperature T h and the right-hand vertical wall is maintained at temperature T c (T h > T c) and the horizontal walls are insulated. At time t > 0, the left-hand vertical wall temperature is suddenly raised to which introduces unsteadiness in the flow field. The partial differential equations governing the unsteady natural convection flow have been solved numerically using a finite control volume method. The computation has been carried out until the final steady state is reached. It is found that the average Nusselt number attains a minimum during the transient period and that the time required to reach the final steady state is longer for low Rayleigh number and shorter for high Rayleigh number.  相似文献   

17.
The method of non-similarity solution is used to study the influence of thermal dispersion on combined convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The transformed conservation laws are solved numerically for the case of variable surface heat flux conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented.  相似文献   

18.
19.
In this paper, we solve the unsteady mixed convection flow near the stagnation point on a heated vertical flat plate embedded in a Darcian fluid-saturated porous medium by means of an analytic technique, namely the Homotopy Analysis Method. Different from previous perturbation results, our analytic series solutions are accurate and uniformly valid for all dimensionless times and for all possible values of mixed convection parameter, and besides agree well with numerical results. This provides us with a new analytic approach to investigate related unsteady problems.  相似文献   

20.
This article considers the problem of mixed convection stagnation-point flow towards a vertical plate embedded in a porous medium with prescribed surface heat flux. It is assumed that the free stream velocity and the surface heat flux vary linearly from the stagnation point. Using a similarity transformation, the governing system of partial differential equations is transformed into a system of ordinary differential equations, before being solved numerically by a finite-difference method. The features of the flow and the heat transfer characteristics are analyzed and discussed. It is found that dual solutions exist for both buoyancy assisting and opposing flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号