共查询到20条相似文献,搜索用时 15 毫秒
1.
A mass spectrometry-based method that does not involve the use of radiolabeling was developed for selective detection of phosphopeptides in complex mixtures. Mixtures of phosphorylated and nonphosphorylated peptides at the low picomole level are analyzed by negative ion electrospray liquid chromatography/mass spectrometry using C-18 packed fused-silica columns (≤320-μm i.d.). Peptides and phosphopeptides in the chromatographic eluant undergo collision-induced dissociation in the free-jet expansion region prior to the mass analyzing quadrupole. Using relatively high collisional excitation potentials, phospho|peptides containing phosphoserine, phosphothreonine, and phosphotyrosine fragment to yield diagnostic ions at m/z 63 and 79 corresponding to PO 2 ?; and PO 3 ?, respectively. Chromatographic peaks containing phosphopeptides are indicated where these diagnostic ions maximize. The highest sensitivity for phosphopeptide detection is obtained using selected-ion monitoring for m/z 63 and 79. Full-scan mass spectra that exhibit the diagnostic phosphopeptide fragment ions, together with pseudomolecular ions, may be obtained by stepping the collisional excitation potential from a high value during the portion of each scan in which the low-mass-to-charge ratio diagnostic marker ions are being detected to a lower value while the upper mass-to-charge ratio range is being scanned. Good sensitivity for phosphopeptide detection was achieved using standard trifluoroacetic acid containing mobile phases for reversed-phase high-performance liquid chromatography. Data illustrating the selectivity and sensitivity of the approach are presented for mixtures of peptides and phosphopeptides containing the three commonly phosphorylated amino acids. 相似文献
2.
Metal-ion-immobilized zeolite nanoparticles have been applied for the first time to isolate phosphopeptides from tryptic beta-casein digest; the phosphopeptides enriched on the modified zeolite nanoparticles could be effectively identified by MALDI-TOF-MS/MS. 相似文献
3.
The fragmentation pathways of seven types of taxoids were investigated by using a LC-MS/MS method, namely: (1) neutral taxoids with a C-4(20) double bond; (2) taxoids with a C-4(20) double bond and oxygenation at C-14; (3) 5-cinnamoyl taxoids with a C-4(20) double bond; (4) a basic taxoid with a C-4(20) double bond; (5) a taxoid with a C-4(20) epoxide; (6) taxoids with an oxetane ring; and (7) taxoids with an oxetane ring and a phenylisoserine C-13 side chain. Depending on the class of core structure and the substitution pattern, each taxoid gave either the molecular adduct ion [M+NH4]+ or [M+H]+. In the MS/MS, the molecular adduct ion gave characteristic product ions corresponding to the loss of water, acetic acid, benzoic acid, and cinnamic acid or the phenylisoserine group. These could reflect the difference of the substitutions and structural modifications and should be utilized for the structure elucidation oftaxoids by LC-MS. 相似文献
4.
Microcystins, hepatotoxic cyclic heptapeptides, are produced by freshwater cyanobacteria, and are classified four groups according to the amino acid structure at unit 7. Normal microcystins contain N-methyldehydroalanine (Mdha) or dehydroalanine (Dha) at unit 7, and command the great part of all microcystins. As unusual microcystin classes, [Dhb 7]microcystins, [
- and
-Ala 7, or N-MeAla 7]microcystins and [
-Ser 7]microcystins have been found. On tumor initiation and/or promotion activities of microcystins, the tumor promotion activity of normal microcystins has been found, but cancer-related activities of microcystins belonging in the other classes have not been clear. To determine normal microcystins as hepatotoxic tumor promoters, a selective determination method was developed. Only Mdha or Dha in normal microcystins was reacted with glutathione (GSH). The GSH-normal microcystins conjugates were reacted with trinitrobenzene sulfonate (TNBS). The TNB–GSH-normal microcystin conjugate can be determined as the total normal microcystin by colorimetry. After methanolysis of the conjugate, dimethyl TNB–glutamate from the conjugate was determined by liquid chromatography/ultraviolet detection (LC/UV) and/or liquid chromatography/mass spectrometry (LC/MS). The detection limits of the total normal microcystin by colorimetry, LC/UV and/or LC/MS were 1 μg, 10 and 0.1 ng, respectively. 相似文献
5.
Hierarchical Ti-aluminophosphate-5 molecular sieves templated by glucose have been synthesized and applied as a potential adsorbent for the first time to selectively capture phosphopeptides from complex peptide mixtures prior to MALDI-TOF MS analysis. 相似文献
6.
A ligand-exchange method for the detection and identification of phosphorylated peptides in complex mixtures is presented that is based on the characterization of phosphorylated species by solution-phase interactions with Fe(III) ions and subsequent fluorescence readout. After the separation of the peptides and digest products on a reversed-phase LC column, the flow is split between the two detection systems. One part is directed towards an electrospray mass spectrometer for direct detection and identification of all the peptides present in the sample. The other part of the flow is directed towards a ligand-exchange detection system. This system relies on the specific release of a fluorescent reporter ligand from a Fe(III)-complex in the presence of phosphorylated peptides. To recognize false positive signals due to high-affinity non-phosphorylated high-acidic peptides and other compounds which are known to be a problem in for instance immobilized metal affinity chromatography (IMAC), a second run is performed after incubation of the sample with alkaline phosphatase. A positive signal in this second run indicates a high-affinity non-phosphorylated compound. The method is illustrated using digest from a phosphorylated alpha-casein. Automated switching between MS and MS-MS was performed to obtain additional information about the compounds present in the sample. The linearity of the method was tested in the range of 0.5-80 microM of phosphorylated peptides. A limit of detection (LOD) of 0.5 microM was obtained for a mono-phosphorylated peptide. The interday (n=4) and intraday precision (n=3) expressed as relative standard deviation was better than 10%. 相似文献
7.
Intracellular signal transduction is often regulated by transient protein phosphorylation in response to external stimuli. Insulin signaling is dependent on specific protein phosphorylation events, and analysis of insulin receptor substrate-1 (IRS-1) phosphorylation reveals a complex interplay between tyrosine, serine, and threonine phosphorylation. The phosphospecific antibody-based quantification approach for analyzing changes in site-specific phosphorylation of IRS-1 is difficult due to the dearth of phospho-antibodies compared with the large number of known IRS-1 phosphorylation sites. We previously published a method detailing a peak area-based mass spectrometry approach, using precursor ions for peptides, to quantify the relative abundance of site-specific phosphorylation in the absence or presence of insulin. We now present an improvement wherein site-specific phosphorylation is quantified by determining the peak area of fragment ions respective to the phospho-site of interest. This provides the advantage of being able to quantify co-eluting isobaric phosphopeptides (differentially phosphorylated versions of the same peptide), allowing for a more comprehensive analysis of protein phosphorylation. Quantifying human IRS-1 phosphorylation sites at Ser303, Ser323, Ser330, Ser348, Ser527, and Ser531 shows that this method is linear ( n = 3; r 2 = 0.85 ± 0.05, 0.96 ± 0.01, 0.96 ± 0.02, 0.86 ± 0.07, 0.90 ± 0.03, 0.91 ± 0.04, respectively) over an approximate 10-fold range of concentrations and reproducible ( n = 4; coefficient of variation = 0.12, 0.14, 0.29, 0.30, 0.12, 0.06, respectively). This application of label-free, fragment ion-based quantification to assess relative phosphorylation changes of specific proteins will prove useful for understanding how various cell stimuli regulate protein function by phosphorylation. 相似文献
8.
A new validated method for the quantitation of the abnormal phospholipid phosphatidylethanol (PEth)—a biomarker for ethanol uptake—has been developed by LC‐ESI‐MS/MS following miniaturised organic solvent extraction and reversed phase chromatography with phosphatidylbutanol (PBut) as internal standard. PEth homologues with two fatty acid substituents—PEth 18 : 1/18 : 1, PEth 16 : 0/16 : 0—were determined in post‐mortem blood collected from heavy drinkers at autopsy and also in whole blood samples from a volunteer after a single 60 g‐dose of ethanol. Furthermore, PEth 18 : 1/16 : 0 or its isobaric isomer PEth—16 : 0/18 : 1 was detected. In comparison to previous high‐performance liquid chromatography (HPLC) methods with evaporative light scattering detection (ELSD), the LC‐MS/MS‐method is more sensitive—with a limit of detection below 20 ng/ml—and more selective for single PEth homologues, while ELSD has been used for detection of the sum of PEth homologues with approximately 10 times less sensitivity. LC‐MS/MS enables monitoring of PEth homologues as biomarkers for harmful and prolonged alcohol consumption as with HPLC/ELSD earlier, where PEth is measurable in blood only after more than 50 g ethanol daily intake for more than 2 weeks. Because of its higher sensitivity, there is a potential to detect single heavy drinking by LC‐MS/MS, when PEth is formed in very low concentrations. This opens a new field of application of PEth to uncover single or multiple heavy drinking at a lower frequency and with a larger window of detection in blood than before by HPLC/ELSD or by use of other direct markers, e.g. ethyl glucuronide or ethyl sulfate. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
Isocoproporphyrin and its derivatives are commonly used as biomarkers of porphyria cutanea tarda, heavy metal toxicity and hexachlorobenzene (HCB) intoxication in humans and animals. However, most are isobaric with other porphyrins and reference materials are unavailable commercially. The structural characterisation of these porphyrins is important but very little data is available. We report here the separation and characterisation of isocoproporphyrin, deethylisocoproporphyrin, hydroxyisocoproporphyrin and ketoisocoproporphyrin, isolated in the faeces of rats fed with a diet containing HCB, by ultra high performance liquid chromatography‐exact mass tandem mass spectrometry (UHPLC‐MS/MS). Furthermore, we report the identification and characterisation of a previously unreported porphyrin metabolite, isocoproporphyrin sulfonic acid isolated in the rat faeces. The measured mass‐to‐charge ratio ( m/z) of the precursor ion was m/z 735.2338, corresponding to a molecular formula of C 36H 39N 4O 11S with an error of 0.3 ppm from the calculated m/z 735.2336. The MS/MS data was consistent with an isocoproporphyrin sulfonic acid structure, derived from dehydroisocoproporphyrinogen by sulfonation of the vinyl group. The metabolite was present in a greater abundance than other isocoproporphyrin derivatives and may be a more useful biomarker for HCB intoxication. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
Amination of 4-nitrophenol, umbelliferone and 4-methylumbelliferone gave the corresponding oxyamines 1-3. These oxyamines react with aldehydes and ketones to form oximes. In the case of aliphatic aldehydes and electron-poor aromatic aldehydes, the oximes undergo base-catalyzed fragmentation in aqueous buffer in the presence of bovine serum albumin to give the parent phenols, which is the acyclic analog of Kemp's elimination reaction of 5-nitrobenzisoxazole 28. The process can be used as a spectrophotometric assay for formaldehyde under aqueous neutral conditions. 相似文献
11.
A gradient LC–MS method was developed for the identification and characterization of degradants of moexipril using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS). Moexipril was subjected to hydrolysis (acid, base and neutral), oxidation, photolytic and thermal degradation conditions as mentioned in ICH guidelines Q1A (R2). The drug degraded under hydrolysis, oxidation and photolytic conditions, but it was stable under thermal conditions. In total, five degradants were formed and separated on an Agilent XDB C‐18 column (4.6 × 150 mm, 5 μm) in a gradient elution method. Four degradants ( D1 , D2 , D4 and D5 ) under acidic conditions, three degradants ( D2 , D3 and D4 ) under basic conditions and three degradants ( D1 , D4 and D5 ) under neutral and oxidative stress conditions were formed. In addition, two degradants ( D4 and D5 ) were formed under photolytic stress conditions. To elucidate the structures of degradants, fragmentation of moexipril and its degradants was studied using LC–MS/MS experiments and accurate mass measurements (HRMS) data. The fragment ions in the product ion tandem mass spectra of all the degradants were compared with those of moexipril and assigned the probable structures for the degradants. 相似文献
12.
利用新型荧光试剂4-(1H-菲并[9,10-d]咪唑-2-)苯甲酸(PIBA)进行柱前衍生并经荧光检测对脂肪胺进行了高效液相色谱(HPLC)分离和在线质谱定性。激发和发射波长分别为ex=261nm,em=443nm。80℃下在吡啶溶剂中用N-乙基-N’-[(3-二甲氨基)丙基]碳二亚胺盐酸盐(EDC)做催化剂,衍生反应10min后获得稳定的荧光产物。在EclipseXDB-C8色谱柱(4.6150mm,5mm)上,梯度洗脱对12种游离脂肪胺衍生物进行了优化分离。采用大气压化学电离源(APCI)正离子模式,实现了各种脂肪胺衍生物的测定。多数脂肪胺的线性回归系数大于0.9999,检测限为10.5~53.4fmol。 相似文献
13.
Everolimus (40-O-(2-hydroxyethyl)rapamycin, Certican) is a 31-membered macrolide lactone. In lymphocytes, it inhibits the mammalian target of rapamycin (mTOR) and is used as an immunosuppressant after organ transplantation. Due to its instability in pure organic solvents and insufficient HPLC separation, NMR spectroscopy analysis of its metabolite structures is nearly impossible. Therefore, structural identification based on tandem mass spectrometry (MS/MS) and MS(n) fragmentation patterns is critical. Here, we have systematically assessed the fragmentation pattern of everolimus during liquid chromatography (LC)-electrospray ionization (ESI)-MS/MS and validated the fragment structures by (1) comparison with structurally identified derivatives (sirolimus), (2) high-resolution mass spectrometry, (3) elucidation of fragmentation pathways using ion trap mass spectrometry (up to MS(5)) and (4) H/D exchange. In comparison with the structurally related immunosuppressants tacrolimus and sirolimus, our study was complicated by the low ionization efficiency of everolimus. Detection of positive ions gave the best sensitivity, and everolimus and its fragments were mainly detected as sodium adducts. LC-ESI-MS/MS of everolimus in combination with collision-induced dissociation (CID) resulted in a complex fragmentation pattern and the structures of 53 fragments were identified. These detailed fragmentation pathways of everolimus provided the basis for structural elucidation of all everolimus metabolites generated in vivo und in vitro. 相似文献
14.
Entacapone is indicated for clinical use as an adjunct to levodopalcarbidopa to treat patients with idiopathic Parkinson's Disease who experience the signs and symptoms of end-of-dose wearing-off. The aim of this study was to determine the photodegradation kinetics and to elucidate the structure of the main degradation product. The stability of entacapone was studied in order to investigate the degradation kinetics of this drug using LC as a stability indicator. Entacapone was subjected to accelerated photodegradation. This study was carried out with methanolic solutions, prepared from coated tablets, in quartz cells under UV light at 254 nm. The degradation process of entacapone in solutions can be described by second-order kinetics under the experimental conditions used in this study. The LC/MS/MS determinations revealed that in the above conditions the photodegraded product formed the geometric isomer of entacapone (Z-entacapone). The obtained results show the importance of appropriate light protection during the drug development process, storage, and handling. 相似文献
15.
Identification of dyes in historic textiles was until recently only based on reversed phase liquid chromatography and diode-array detection (RPLC–DAD). Although in the last years mass spectrometry (MS) is increasingly used as a detection system for liquid chromatography, most applications in the field are directed to identification of the molecular ions or in studies dedicated to degradation products which may be used as markers in RPLC–DAD. In the present work, an analytical protocol for the identification of dyes using RPLC/ESI/MS is presented. Atmospheric pressure electrospray ionization (ESI) was applied, in the negative ion monitoring mode. Both single stage and tandem MS (MS/MS) approaches were considered. An ion trap was used as mass analyzer. Experiments are based on the characterization of standards (natural dyes and/or dyed fibers) with the mass spectrometer sequentially working in the following modes: single MS/full scan, followed by plotting chromatograms through ion extraction (IEC) according to mass/charge ratios corresponding to molecular ions; single MS/selected ion monitoring (SIM) mode; tandem MS/single reaction monitoring (SRM) mode; tandem MS/multiple reactions monitoring (MRM) or product ion scanning modes. A faster chromatographic separation could be applied as MS detection readily balanced the selectivity of the analytical process. In a case study, 11 dyes from 3 biological sources were detected in a 0.5 mg historic sample. 相似文献
16.
Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, β-N-methylamino-L-alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, β-amino-N-methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography-tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid. 相似文献
17.
Poly(ethylene glycol) (PEG)ylation of peptides and proteins creates significant challenges for detailed structural characterization, such as PEG heterogeneity, site of addition and number of attached PEGylated moieties. Recently, we published a novel LC/MS methodology with a post-column addition of amines to obtain accurate masses of PEGylated peptides and proteins. The accurate masses can be used to assign the structures and number of attached PEGs [15], but the PEGylation site remains unclear in situations where multiple potential attachments are involved. Here, we present a methodology combining in-source fragmentation (ISF) with CID-MS/MS to elucidate the PEGylated sites in PEGylated products. All PEGylated samples, either prepared in acidic solution, or collected from a RP-HPLC stream, were first ionized via ISF to produce products containing small PEG fragment attachment, and then those fragment ions obtained were sequenced via CID MS/MS to deduce the PEGylation site. The methodology was successfully applied to PEGylated glucagon and IgG4 antibody light chain, which demonstrated that the small PEG fragments attached were stable during the CID activation. 相似文献
18.
Sensitive quantitation of prions in biological samples is an extremely important and challenging analytical problem. Prions are the cause of several fatal neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). At this time, there are no methods to diagnose TSEs in live animals or to assure a prion-free blood supply for humans. Prions have been shown to be present in blood by transfusion experiments, but based on the amount of infectivity found in these types of experiments, the amount of misfolded prion protein in blood is estimated to be only 30 to 625 amol/mL. More sensitive detection of prions in brain would allow earlier detection of disease and assure a safer food supply. We studied quantitation of the prion protein by use of nanoscale liquid chromatography coupled to a tandem mass spectrometer using the multiple reaction monitoring mode of operation. We developed a method based on the detection of VVEQMCTTQYQK obtained by reduction, alkylation, and digestion with trypsin of the prion protein. Detection of VVEQMCTTQYQK was more sensitive than for the derivative with phenylisothiocyanate (PITC) because of decreased ionization efficiency of the PITC-derivatized peptides. The VVEQMCTTQYQK method has a LOD of 20 to 30 amol for pure standards. Proof of principle is demonstrated by quantitation of the amount of PrP 27-30 in the brains of terminally ill Syrian hamsters. 相似文献
20.
Despite significant technological and methodological advancements in peptide sequencing by mass spectrometry, analyzing peptides that exhibit only poor fragmentation upon collision-induced dissociation (CID) remains a challenge. A major cause for unfavorable fragmentation is insufficient proton 'mobility' due to charge localization at strongly basic sites, in particular, the guanidine group of arginine. We have recently demonstrated that the conversion of the guanidine group of the arginine side chain by malondialdehyde (MDA) is a convenient tool to reduce the basicity of arginine residues and can have beneficial effects for peptide fragmentation. In the present work, we have focused on peptides that typically yield incomplete sequence information in CID-MS/MS experiments. Energy-resolved tandem MS experiments were carried out on angiotensins and arginine-containing phosphopeptides to study in detail the influence of the modification step on the fragmentation process. MDA modification dramatically improved the fragmentation behavior of peptides that exhibited only one or two dominant cleavages in their unmodified form. Neutral loss of phosphoric acid from phosphopeptides carrying phosphoserine and threonine residues was significantly reduced in favor of a higher abundance of fragment ions. Complementary experiments were carried out on three different instrumental platforms (triple-quadrupole, 3D ion trap, quadrupole-linear ion trap hybrid) to ascertain that the observation is a general effect. 相似文献
|