首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian Federation would to a large extent solve its problems and increase its export potential.  相似文献   

2.
The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.  相似文献   

3.
Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa–232U–233U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.  相似文献   

4.
A concept of a large-scale nuclear power engineering system equipped with fusion and fission reactors is presented. The reactors have a joint fuel cycle, which imposes the lowest risk of the radiation impact on the environment. The formation of such a system is considered within the framework of the evolution of the current nuclear power industry with the dominance of thermal reactors, gradual transition to the thorium fuel cycle, and integration into the system of the hybrid fusion-fission reactors for breeding nuclear fuel for fission reactors. Such evolution of the nuclear power engineering system will allow preservation of the existing structure with the dominance of thermal reactors, enable the reprocessing of the spent nuclear fuel (SNF) with low burnup, and prevent the dangerous accumulation of minor actinides. The proposed structure of the nuclear power engineering system minimizes the risk of radioactive contamination of the environment and the SNF reprocessing facilities, decreasing it by more than one order of magnitude in comparison with the proposed scheme of closing the uranium–plutonium fuel cycle based on the reprocessing of SNF with high burnup from fast reactors.  相似文献   

5.
6.
The transition to the use of supercritical carbon dioxide as a working fluid for power generation units will significantly reduce the equipment′s overall dimensions while increasing fuel efficiency and environmental safety. Structural and parametric optimization of S–CO2 nuclear power plants was carried out to ensure the maximum efficiency of electricity production. Based on the results of mathematical modeling, it was found that the transition to a carbon dioxide working fluid for the nuclear power plant with the BREST–OD–300 reactor leads to an increase of efficiency from 39.8 to 43.1%. Nuclear power plant transition from the Rankine water cycle to the carbon dioxide Brayton cycle with recompression is reasonable at a working fluid temperature above 455 °C due to the carbon dioxide cycle′s more effective regeneration system.  相似文献   

7.
The present paper deals with investigation of the possibilities for reducing the risk of proliferation of fissionable materials by means of increasing the degree of protection of fresh fuel intended for light-water reactors against unsanctioned use in the case of withdrawal of a recipient country of deliveries from IAEA safeguards. It is shown that the use of recycled uranium for manufacturing export nuclear fuel makes transfer of nuclear material removed from the fuel assemblies for weapons purposes difficult because of the presence of isotope 232U, whose content increases when one attempts to enrich uranium extracted from fresh fuel. In combination with restricted access to technologies for isotope separation by means of establishing international centers for uranium enrichment, this technical measure can significantly reduce the risk of proliferation associated with export deliveries of fuel made of low-enriched uranium. The assessment of a maximum level of contamination of nuclear material being transferred by isotope 232U for the given isotope composition of the initial fuel is obtained. The concept of further investigations of the degree of security of export deliveries of fuel assemblies with recycled uranium intended for light-water reactors is suggested.  相似文献   

8.
Technical Physics - In the case of a severe accident at a nuclear power plant with light-water reactors, the most effective method for localization of the formed melt (corium) is its retention in...  相似文献   

9.
徐銤 《物理》2006,35(8):689-692
20世纪三四十年代,原子物理学家们发现中子轰击铀原子核的裂变现象并首次实现可控裂变链式反应,把世界带进了原子能时代.半个世纪以来核电已达到全世界电力的16%.目前99%以上都是热中子反应堆核电站。在大规模发展核电的情况下,比如说百GWe,必须加快快中子增殖反应堆的发展和推广,方无核燃料匮乏之虞。  相似文献   

10.
磁约束聚变堆及ITER实验包层模块设计研究进展   总被引:5,自引:0,他引:5  
目前国际上代表性的磁约束聚变反应堆设计包括美国的ARIES系列和APEX系列、欧洲的PPCS系列、日本的SSTR系列、中国的FDS系列设计,以及国际合作的国际热核聚变实验堆等。这些设计研究涉及到聚变能科学技术发展的各个方面,包括聚变实验堆、商用示范堆和商用动力电站等的设计研究、相关物理和技术发展以及相关的能源技术与经济策略研究等。简要介绍了上述设计研究领域的现状和发展趋势。The uhimate goal of the fusion program is to develop large scale power plants for the production of electricity. At present, there are many representative designs of magnetic confinement fusion reactors in the world,e.g. ARIES and APEX in USA, PPCS in EU, SSTR in Japan, FDS in China, and International Thermonuclear Experimental Reactor (ITER). These studies cover many aspects on fusion experimental reactors, DEMO reactors, and commercial fusion power plants, including plasma physics, blanket technologies, material behavior, and technologies required to construct and operate such complex plants. The study status and development strategy in various countries are summarized and reviewed.  相似文献   

11.
At present, 240 000 t of spent nuclear fuel (SF) has been accumulated in the world. Its long-term storage should meet safety conditions and requires noticeable finances, which grow every year. Obviously, this situation cannot exist for a long time; in the end, it will require a final decision. At present, several variants of solution of the problem of SF management are considered. Since most of the operating reactors and those under construction are thermal reactors, it is reasonable to assume that the structure of the nuclear power industry in the near and medium-term future will be unchanged, and it will be necessary to utilize plutonium in thermal reactors. In this study, different strategies of SF management are compared: open fuel cycle with long-term SF storage, closed fuel cycle with MOX fuel usage in thermal reactors and subsequent long-term storage of SF from MOX fuel, and closed fuel cycle in thermal reactors with heterogeneous fuel arrangement. The concept of heterogeneous fuel arrangement is considered in detail. While in the case of traditional fuel it is necessary to reprocess the whole amount of spent fuel, in the case of heterogeneous arrangement, it is possible to separate plutonium and 238U in different fuel rods. In this case, it is possible to achieve nearly complete burning of fissile isotopes of plutonium in fuel rods loaded with plutonium. These fuel rods with burned plutonium can be buried after cooling without reprocessing. They would contain just several percent of initially loaded plutonium, mainly even isotopes. Fuel rods with 238U alone should be reprocessed in the usual way.  相似文献   

12.
为计算混合堆在未来燃料循环过程中起到的作用,进行了混合堆共生系统物料平衡计算。根据我国核电发展现状和中长期发展规划及中长期(2030年、2050年)发展战略研究,并充分考虑了我国经济发展速度、人口数量和人均用电量,计算得到了2100年之前,我国核电机组装机容量。假定不同堆型搭配的混合堆共生系统核燃料循环的4种情景并建立对应的物料平衡模型进行计算。计算结果表明,压水堆、混合堆和快堆共生模式能最大限度的减少天然铀的需求和节约乏燃料处置费用。  相似文献   

13.
N L MISRA 《Pramana》2011,76(2):201-212
Nuclear energy is one of the clean options of electricity generation for the betterment of human life. India has an ambitious program for such electricity generation using different types of nuclear reactors. The safe and efficient generation of electricity from these reactors requires quality control of different nuclear materials, e.g. nuclear fuel, structural materials, coolant, moderators etc. These nuclear materials have to undergo strict quality control and should have different specified parameters for their use in nuclear reactors. The concentration of major and trace elements present in these materials should be within specified limits. For such chemical quality control of these materials, major and trace elemental analytical techniques are required. Since some of these materials are radioactive, the ideal chemical characterization techniques should have multielement analytical capability, should require very less sample (micrograms level) for analysis so that the radioactive waste generated, and radiation exposure to the detector and operator are minimum. Total reflection X-ray fluorescence (TXRF) and energy dispersive X-ray fluorescence (EDXRF) with improved features, e.g. application of filters, secondary target and instrumental geometry require very small amount of sample and thus can be suitably used for the characterization of nuclear materials mainly for the determination of elements at trace and major concentration levels. In Fuel Chemistry Division, TXRF analytical methods have been developed for trace element determinations in uranium and thorium oxides, chlorine determination in nuclear fuel and cladding materials, sulphur in uranium, uranium in sea water etc. Similarly, EDXRF analytical methods with radiation filters (to reduce background) and improved sample preapartion techniques, e.g. fusion bead and taking samples in the form of solution on filter papers have been used for developing analytical methods for the determination of U and Th in their mixed matrices, Cd in uranium etc. Some of these studies have been reported in this paper.  相似文献   

14.
《Comptes Rendus Physique》2002,3(7-8):1067-1079
Plutonium recycling offers benefits in an energy perspective of sustainable development, and, moreover it contributes to non-proliferation. Prior to recycling, reactor-grade plutonium from light-water reactors does not lend itself easily to the assembly of explosive nuclear devices; thereafter, practically not at all. Control systems for material security and non-proliferation should identify and adopt several categories of plutonium covering various isotopic mixtures associated with different fuel types, in order to better reflect the risks and to better focus their controls. The author proposes the adoption of three categories of plutonium. To cite this article: B. Pellaud, C. R. Physique 3 (2002) 1067–1079.  相似文献   

15.
刘成安  师学明 《计算物理》2010,27(3):433-438
简要描述聚变-裂变混合堆在长期能源发展战略中的地位,着重计算分析具有不同类型的聚变堆芯和包层的混合堆生产电能和可裂变核燃料的能力,研究不同类型聚变-裂变混合堆与其支持的卫星堆(如压水堆)组合燃料循环系统生产电能的能力.指出以天然铀或贫化铀为燃料,水冷却的包层设计是一种经济可行、技术风险较小的设计方案.  相似文献   

16.
Data on the modern state and development trends for coal and nuclear power engineering in Russia up to 2030 are generalized. It is emphasized that from the viewpoint of strategy, coal and uranium fuel will be the main energy carriers. The forecast of energy consumption is made; the “roadmap” of new power-generating units of heat and nuclear power plants on the territory of Russia is presented.  相似文献   

17.
The canisters with spent nuclear fuel produced during the operation of WWER reactors at the Czech power plants are planned, like in other countries, to be disposed of in an underground repository. Canisters will be surrounded by compacted bentonite that will retard the migration of safety-relevant radionuclides into the host rock. A new code that enables the modelling of the critical radionuclides transport from the canister through the bentonite layer in the cylindrical geometry was developed. The code enables to solve the diffusion equation for various types of initial and boundary conditions by means of the finite difference method and to take into account the non-linear shape of the sorption isotherm. A comparison of the code reported here with code PAGODA, which is based on analytical solution of the transport equation, was made for the actinide chain 4N+3 that includes 239Pu. A simple parametric study of the releases of 239Pu, 129I, and 14C into geosphere is discussed.  相似文献   

18.
随着核电事业的快速发展,核电厂卸载的乏燃料越来越多。如何处置核电站乏燃料中的次锕系核素(MA)既是核燃料再利用的重要过程,又是闭式循环中的关键步骤。如果处置得当,不仅可以提高燃料的利用率,而且可以将MA变成同位素燃料电池、中子源等有用的核素。国际上认可的处置方法是分离-嬗变,但是嬗变MA的难点是嬗变堆型的选取和如何提高嬗变率。压水堆(PWR)是国内外最成熟的堆型和商业运行的主要堆型,也是现阶段最具有可能进行MA嬗变的堆型。于是,本文利用MCNP程序研究了压水堆嬗变MA的特性,通过研究MA嬗变棒的设计、添加位置和添加量等对压水堆堆芯有效增殖因子的影响,初步探索出最佳的压水堆嬗变MA的设计方案,为我国现阶段进行压水堆嬗变MA奠定了理论基础。  相似文献   

19.
丁文杰  黄欢  戴涛  郭海兵 《强激光与粒子束》2019,31(5):056007-1-056007-6
基于核燃料循环政策技术的成熟度,选取了一次通过循环方案(OTC)、单次复用循环方案(TTC)、快堆闭式循环方案(FRC)及混合堆闭式循环方案(HRC)四种典型的核燃料循环方案进行分析。采用平衡物质流模型对不同燃料循环方案的可持续性进行研究,基于平准化电力成本计算方法对不同方案的燃料成本和乏燃料处置成本进行分析。研究结果表明:闭式燃料循环可极大减少核废料产生; 燃料可自持的FRC方案及HRC方案可使用贫铀做燃料而不消耗天然铀; 仅考虑燃料成本和乏燃料处置成本时,HRC方案的经济性最高而TTC方案的经济性最差。  相似文献   

20.
We propose an absorption method for determining the concentrations of iodine-containing substances (I2 and IO 3 ? ) in real time in liquid acid media formed when spent nuclear fuel is reprocessed at nuclear fuel cycle plants. The essence of the method is to measure simultaneously at two wavelengths the intensity of the radiation that passes through the solution being analyzed. The sensitivity of this method allows reliable and real-time control to be exercised over both the technological process of fuel reprocessing and the operations of purification systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号