首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large positive magnetoresistance peaked at the Curie temperature has been observed in quantum well structures GaAs/AlGaAs doped by Mn. We suggest a new mechanism of magnetoresistance within low T c ferromagnets resulting from a pronounced dependence of spin polarization at the vicinity of T c on the external magnetic field. As a result, any contribution to resistance dependent on the Zeeman splitting of the spin subbands is amplified with respect to the direct effect of the external field. In our case we believe that the corresponding contribution is related to the upper Hubbard band. We propose that the mechanism considered here can be exploited as the mark of ferromagnetic transition.  相似文献   

2.
We studied the influence of the nuclear spin diffusion on the dynamical nuclear polarization of low dimensional nanostructures subject to optical pumping. Our analysis shows that the induced nuclear spin polarization in semiconductor nanostructures will develop both a time and position dependence due to a nonuniform hyperfine interaction as a result of the geometrical confinement provided by the system. In particular, for the case of semiconductor quantum wells, nuclear spin diffusion is responsible for a nonzero nuclear spin polarization in the quantum well barriers. As an example we considered a 57 Å GaAs square quantum well and a 1000 Å Al x Ga1?x As parabolic quantum well both within 500 Å Al0.4Ga0.6As barriers. We found that the average nuclear spin polarization in the quantum well barriers depends on the strength of the geometrical confinement provided by the structure and is characterized by a saturation time of the order of few hundred seconds. Depending on the value of the nuclear spin diffusion constant, the average nuclear spin polarization in the quantum well barriers can get as high as 70% for the square quantum well and 40% for the parabolic quantum well. These results should be relevant for both time resolved Faraday rotation and optical nuclear magnetic resonance experimental techniques.  相似文献   

3.
郝亚非 《中国物理 B》2013,22(1):17102-017102
We theoretically investigate the spin-orbit interaction in GaAs/AlxGa1 x As coupled quantum wells. We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting. For the coupled quantum wells which bear an inherent structure inversion asymmetry, the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term. If the widths of the two step quantum wells are different, the electron probability density in the wider step quantum well is considerably higher than that in the narrower one, resulting in the decrease of the spin splitting from the interface term. The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.  相似文献   

4.
The size-quantized spectrum of a film (quantum well) with a variable band gap based on Pb1?x Sn x Se compounds has been studied. It is shown that an asymmetric modulation of the band gap in the film growth direction leads to the spin splitting of the electron subbands of a uniform quantum well. The effect of the state of the film surface on spontaneous polarization of the electron gas is discussed.  相似文献   

5.
The polarization properties of the luminescence of an undoped InGaAs quantum well in InGaAs/GaAs het-erojunctions with a Mn delta layer in the GaAs barrier have been studied in a wide range of temperatures and magnetic fields. It has been found that the s, p-d exchange interaction of carriers in the quantum well with Mn ions in the δ layer leads to the ferromagnetic behavior of both the Zeeman splitting and spin polarization of the carriers with a Curie temperature typical of the Mn delta layer in the GaAs barrier. The saturation of the spin polarization of holes associated with their Fermi degeneracy has been observed at low temperatures (T < 20 K).  相似文献   

6.
In this work the effect of spin–orbit coupling and orbital polarization (OP) corrections on the spin and orbital magnetism of two half-Heusler alloys (CuFeSb and CuCoSb) is investigated by means of local spin density calculations. It is demonstrated that OP corrections predict large orbital moments for Fe and Co individual atoms in the considered compounds. It is found that the Heusler alloys with C1b structure are potential candidates to show large orbital magnetism.  相似文献   

7.
One-body mechanisms of spin splitting of the energy spectrum of 2D electrons in a one-side doped (001) GaAs/Al x Ga1 ? x As quantum well have been studied theoretically and experimentally. The interfacial spin splitting has been shown to compensate (enhance) considerably the contribution of the bulk Dresselhaus (Bychkov-Rashba) mechanism. The theoretical approach is based on the solution of the effective mass equation in a quasi-triangular well supplemented by a new boundary condition at a high and atomically sharp hetero-barrier. The model takes into account the spin-orbit interaction of electrons with both bulk and interfacial crystal potential having C 2v symmetry, as well as the lack of inversion symmetry and nonparabolicity of the conduction band in GaAs. The effective 2D spin Hamiltonian including both bulk and interface contributions to the Dresselhaus (αBIA) and Rashba (αSIA) constants has been derived. The analytical relation between these constants and the components of the anisotropic nonlinear g-factor tensor in an oblique quantizing magnetic field has been found. The experimental approach is based, on one hand, on the detection of electron spin resonance in the microwave range and, on the other hand, on photoluminescence measurements of the nonparabolicity parameter. The interface contributions to αBIA and αSIA have been found from comparison with the theory.  相似文献   

8.
An optical method for the measurement of itinerant electron spin polarization is proposed. It is based on the idea that when an itinerant electron is injected into a p-type semiconductor with a valence band spin orbit splitting ? kT, the polarization of the resulting recombination radiation is characteristic of the spin polarization. The feasibility and advantages of this technique are discussed.  相似文献   

9.
E. Goering 《哲学杂志》2013,93(25):2895-2911
Distinguishable L2 and L3 edges and a clear separation into j 3/2 and j 1/2 excitations are necessary for the application of L2,3 edge X-ray magnetic circular dichroism (XMCD) sum rules, which provide element-specific information about spin and orbital magnetic moments. This separation is present for the heavy transition metals (TM), like Co and Ni, due to their large L2,3 spin–orbit splitting. However, for the light TM, the 2p spin–orbit splitting is strongly reduced and quantum mechanical mixing of j 3/2 and j 1/2 excitations is present. This mixing reduces the observed XMCD related spin and magnetic dipole term contributions and prevents the direct application of XMCD spin sum rules. A large number of 2p?→?3d absorption spectra have been fitted nearly perfectly by a simple and phenomenological model, which takes into account lifetime effects and provides quantitative information about jj-mixing at the light TMs. On the basis of this mixing coefficient, sum rule correction factors have been determined. The proposed model results in renormalized magnetic projected XMCD spin moments, verified for different compounds of V, Cr, and Mn. A comparison with complementary methods gives consistent results. This or a similar fitting procedure and the estimated correction factors can be used in the future as a light element XMCD spin renormalization technique.  相似文献   

10.
The nuclear spin dynamics in an asymmetrically doped 16-nm AlAs quantum well grown along the [001] direction has been studied experimentally using the time decay of the Overhauser shift of paramagnetic resonance of conduction electrons. The nonzero spin polarization of nuclei causing the initial observed Overhauser shift is due the relaxation of the nonequilibrium spin polarization of electrons into the nuclear subsystem near electron paramagnetic resonance owing to the hyperfine interaction. The measured relaxation time of nuclear spins near the unity filling factor is (530 ± 30) min at the temperature T = 0.5 K. This value exceeds the characteristic spin relaxation times of nuclei in GaAs/AlGaAs heterostructures by more than an order of magnitude. This fact indicates the decrease in the strength of the hyperfine interaction in the AlAs quantum well in comparison with GaAs/AlGaAs heterostructures.  相似文献   

11.
Nonlinear optical properties, optical rectification coefficients and the second-order and third-order harmonic generation coefficients as a function of photon energy are dealt in a GaAs/Ga0.8Al0.2As quantum dot in the presence of electric field and the spin–orbit interactions. The Dresselhaus and the Rashba spin–orbit interactions are added in the Hamiltonian. The electric field-induced photoionization cross section with the normalized photon energy for an on-centre donor impurity in the quantum dot is studied. The effect of nonparabolicity is included in the Hamiltonian. The spin–orbit interaction as a function of photon energy is investigated. The computations are carried out within the framework of the single band effective mass approximation using variational technique and the compact density approach. It is found that the spin–orbit interaction coefficients show strong effects on the resonant position of harmonic generations. The results are compared with the recent investigations.  相似文献   

12.
《Current Applied Physics》2018,18(11):1205-1211
The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.  相似文献   

13.
Optical orientation of electrons was used to polarize the crystal lattice nuclei in quantum-size heterostructures and to study the effect of the conduction band spin splitting on the spin states of quasi-two-dimensional (2D) electrons drifting in an external electric field. High (~1%) nuclear polarization was registered using polarized luminescence and ODNMR in single GaAs/AlGaAs quantum wells. Measurement was made of the hyperfine interaction fields created by polarized nuclei on electrons and by electrons on nuclei. The spin-lattice relaxation of nuclei on the non-degenerate 2D electron gas was calculated. A comparison of the theoretical and experimental longitudinal relaxation times permitted the conclusion that the localized charge carriers are responsible for nuclear polarization in quantum wells in the temperature range of 2–77 K. A new effect has been studied, i.e. induction of an effective magnetic field acting on 2D electron spins when electrons drift in an external electric field in the quantum well plane. This effective field Beff is due to the spin splitting of the conduction band of 2D electrons. The paper discusses possible registration of an ODNMR signal when the field Beff is modulated by an electric current during optical orientation.  相似文献   

14.
We have used a laser deposition method to obtain films of the ternary compound CuGa5Se8. We have studied their composition and structure. We have established that both the crystals and the films of the indicated compound crystallize in a defect-containing chalcopyrite structure. We have determined the energy and nature of the optical transitions from the transmission spectra in the region of the intrinsic absorption edge. We have calculated the valence-band crystal-field (ΔCF) and spin–orbit (ΔSO) splitting energies according to Hopfield’s quasicubic model for the ternary compound CuGa5Se8.  相似文献   

15.
Hole structure of a GaAs–Al0.3Ga0.7Asp-type multiple quantum well (MQW) subjected to an electric field parallel to the growth axis is studied using the envelope-function approximation and taking into account the valence subband mixing. The system considered in this work consists of five GaAs wells and six thick Al0.3Ga0.7As barriers. The valence subband structure and the optical-absorption coefficient are calculated as functions of the electric-field strength for various doping levels. The subband structure is shown to be nonparabolic and anisotropic in the plane of the layers with a four-fold symmetry. The spin splitting due to the lack of specular symmetry of quantum wells is a growing function of the electric-field strength. The calculated optical absorption is in good agreement with the experimental spectra.  相似文献   

16.
Sputtering technique has been used for the deposition of AgGaSe2 thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe2 thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe2 structure up to annealing temperature 450 °C and then the structure turned to the single phase AgGaSe2 with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 °C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe2 thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).  相似文献   

17.
Photoluminescence spectra from a single-crystalline AgGaSe2 ternary compound grown by the Bridgman-Stockbarger method from a nonstoichiometric melt are studied in the temperature interval 8–300 K under various excitation levels. The spectra contain emission bands associated with donor-acceptor recombination, as well as with bound and free excitons. The exciton binding energy and the energy gap of the AgGaSe2 crystals are evaluated. The temperature dependence of the energies of bound and free excitons, as well as of the energy gap of the crystals, is constructed.  相似文献   

18.
The use of Raman scattering in different polarization geometries makes it possible to observe the splitting of transverse optical (TO) phonon modes confined in GaAs/AlAs superlattices grown on faceted GaAs (311)A surfaces. The frequencies of TO modes with atomic displacements in the direction along the facets were observed to be higher than in the transverse one. Increased splitting, up to 3.5 cm  1, was observed for (311)A superlattices when the average thickness of the GaAs layers was 6 monolayers or less. The splitting was absent in superlattices grown on (311)B surfaces under the same conditions. The effect of splitting is reputed to be caused by corrugation of GaAs/AlAs (311)A interfaces and formation of lateral superlattices or arrays of quantum wires, depending on the GaAs layer thickness.  相似文献   

19.
Summary An attempt is made to study effective electron mass in quantum well wires of ternary chalcopyrite semiconductors by formulating a new 1D dispersion relation, within the framework of thek·p formalism considering the anisotropies in the band parameters. It is found, taking quantum well wires ofn-CdGeAs2 as an example, that the effective Fermi level mass depends on the subband index due to the combined influence of crystal-field splitting parameter and the anisotropic spinorbit splitting parameters, respectively. The masses increase with increasing carrier degeneracy and decreasing film thickness, respectively. In addition, the well-known results for the corresponding parabolic energy bands have been derived as special cases of the generalized formulations.  相似文献   

20.
《Current Applied Physics》2018,18(11):1182-1184
The combination of angular spin momentum with electronics is a promising successor to charge-based electronics. The conduction bands in GaAs may become spin-polarized via optical spin pumping, doping with magnetic ions, or induction of a moment with an external magnetic field. We investigated the spin populations in GaAs with x-ray magnetic circular dichroism for each of these three cases. We find strong anti-symmetric lineshapes at the Ga L3 edge indicating conduction band spin splitting, with differences in line width and amplitude depending on the source of spin polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号