首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZnO epitaxial layers with treated low-temperature (LT) ZnO buffer layers were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on p-type Si (1 0 0) substrates. The LT-ZnO buffer layers were treated by thermal annealing in O2 plasma with various radio frequency (RF) power ranging from 100 to 300 W before the ZnO epilayers growth. Atomic force microscopy (AFM), high-resolution X-ray diffraction (HR-XRD), and room-temperature (RT) photoluminescence (PL) were carried out to investigate their structural and optical properties. The surface roughness measured by AFM was improved from 2.71 to 0.59 nm. The full-width at half-maximum (FWHM) of the rocking curve observed for ZnO (0 0 2) XRD and photoluminescence of the ZnO epilayers was decreased from 0.24° to 0.18° and from 232 to 133 meV, respectively. The intensity of the XRD rocking curve and the PL emission peak were increased. The XRD intensity ratio of the ZnO (0 0 2) to Si substrates and PL intensity ratio of the near-band edge emissions (NBEE) to the deep-level emissions (DLE) as a function of the RF power was increased from 0.166 to 0.467 and from 2.54 to 4.01, respectively. These results imply that the structural and optical properties of ZnO epilayers were improved by the treatment process.  相似文献   

2.
Characterization of the epitaxial defect known as the carrot defect was performed in thick 4H-SiC epilayers. A large number of carrot defects have been studied using different experimental techniques such as Nomarski optical microscopy, KOH etching, cathodoluminescence and synchrotron white beam X-ray topography. This has revealed that carrot defects appear in many different shapes and structures in the epilayers. Our results support the previous assignment of the carrot defect as related to a prismatic stacking fault. However, we have observed carrot defects with and without a visible threading dislocation related etch pit in the head region, after KOH etching. Polishing of epilayers in a few μm steps in combination with etching in molten KOH and imaging using Nomarski optical microscope has been used to find the geometry and origin of the carrot defects in different epilayers. The defects were found to originate both at the epi-substrate interface and during the epitaxial growth. Different sources of the carrot defect have been observed at the epi-substrate interface, which result in different structures and surfaces appearance of the defect in the epilayer. Furthermore, termination of the carrot defect inside the epilayer and the influence of substrate surface damage and growth conditions on the density of carrot defects are studied.  相似文献   

3.
A process optimization of the growth of silicon carbide (SiC) epilayers on 4° off-axis 4H-SiC substrates is reported. Process parameters such as growth temperature, C/Si ratio and temperature ramp-up conditions are optimized for the standard non-chlorinated growth in order to grow smooth epilayers without step bunching and triangular defects. The growth of 6-μm-thick n-type-doped epitaxial layers on 75-mm-diameter wafers is demonstrated as well as that of 20-μm-thick layer. The optimized process was then transferred to a chloride-based process and a growth rate of 28 μm/h was achieved without morphology degradation. A low growth temperature and a low C/Si ratio are the key parameters to reduce both the step bunching and the formation of triangular defects.  相似文献   

4.
The quality of GaN epilayers grown by molecular beam epitaxy on substrates such as sapphire and silicon carbide has improved considerably over the past few years and in fact now produces AlGaN/GaN HEMT devices with characteristics among the best reported for any growth technique. However, only recently has the bulk defect density of MBE grown GaN achieved levels comparable to that obtained by MOVPE and with a comparable level of electrical performance. In this paper, we report the ammonia-MBE growth of GaN epilayers and HFET structures on (0 0 0 1)sapphire. The effect of growth temperature on the defect density of single GaN layers and the effect of an insulating carbon doped layer on the defect density of an overgrown channel layer in the HFET structures is reported. The quality of the epilayers has been studied using Hall effect and the defect density using TEM, SEM and wet etching. The growth of an insulating carbon-doped buffer layer followed by an undoped GaN channel layer results in a defect density in the channel layer of 2×108 cm−2. Mobilities close to 490 cm2/Vs at a carrier density of 8×1016 cm−3 for a 0.4 μm thick channel layer has been observed. Growth temperature is one of the most critical parameters for achieving this low defect density both in the bulk layers and the FET structures. Photo-chemical wet etching has been used to reveal the defect structure in these layers.  相似文献   

5.
Editorial Board     
The employment of more than 10 μm thick AlN epilayers on SiC substrates for AlGaN/GaN high-electron-mobility transistors (HEMTs) substantially raises their performance in high-power energy-efficient amplifiers for 4G wireless mobile stations. In this paper, structural properties and surface morphology of thick AlN epilayers deposited by hydride vapor phase epitaxy (HVPE) on off-axis conductive 6H-SiC substrates are reported. The epilayers were examined in detail by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Nomarski differential interference contrast (DIC), scanning electron microscopy (SEM), and selective wet chemical etching. At optimal substrate preparation and growth conditions, a full width at half-maximum (FWHM) of the XRD rocking curve (RC) for the symmetric (00.2) reflex was very close to that of the substrate (less than 40 arcsec) suggesting low screw dislocation density in the epilayer (~106 cm?2) and small in-plane tilt misorientation. Reciprocal space mapping around asymmetric reflexes and measured lattice parameters indicated a fully relaxed state of the epilayers. The unit-cell-high stepped areas of the epilayers with 0.5 nm root mean square (RMS) roughness over 1×1 μm2 scan were alternated with step-bunching instabilities up to 350 nm in height. Low warp of the substrates makes them suitable for precise epitaxy of HEMT structures.  相似文献   

6.
AlInGaN quaternary epilayers have been grown with various TMGa flows by metalorganic chemical vapor deposition to investigate the influence of growth rate on the structural and optical properties. Triple-axis X-ray diffraction measurements show AlInGaN epilayers have good crystalline quality. Photoluminescence (PL) measurements show that the emission intensity of AlInGaN epilayers is twenty times stronger than that of AlGaN epilayer with comparable Al content. V-shaped pits are observed at the surface of AlInGaN epilayers by atomic force microscopy (AFM) and transmission electron microscopy (TEM). High growth rate leads to increased density and size of V-shaped pits, but crystalline quality is not degraded.  相似文献   

7.
Crack-free aluminum nitride (AlN) epilayers were grown on sapphire using growth-interrupt technique by radio-frequency assisted molecular beam epitaxy. In-situ reflectance spectroscopy was introduced for real-time monitoring of the growth of AlN epilayers. X-ray diffraction and atomic force microscopy measurements reveal that the threading dislocation density decreases considerably by using the growth-interrupt technique. Raman spectroscopy is used to characterize the residual stress of AlN epilayers. The optical transmittance and absorption spectra of AlN epilayers show a high transmittance and a sharp absorption edge.  相似文献   

8.
In this paper we show a detailed AFM observation of GaAs epilayers grown on GaAs (0 0 1) substrate patterned with SiO2 mask by low angle incidence microchannel epitaxy (LAIMCE). We have found that low index facets are formed as sidewalls of the epilayers grown in open window aligned along singular directions. We have also found that low index facets are formed as sidewalls for epilayers showing a zigzagging edge. In the case of the epilayers grown in an open window aligned 10° off [0 1 0], for which lateral growth is maximum, we have found round shape sidewalls and (0 0 1) terraces at the boundary of the sidewall and the top surface. We concluded that the lateral growth proceeds when the sidewall is rough, while it stops when low index facets are formed as sidewalls.  相似文献   

9.
We report the structural and electrical properties of InAsSb epilayers grown on GaAs (0 0 1) substrates with mid-alloy composition of 0.5. InSb buffer layer and InAsxSb1−x step-graded (SG) buffer layer have been used to relax lattice mismatch between the epilayer and substrate. A decrease in the full-width at half-maximum (FWHM) of the epilayer is observed with increasing the thickness of the InSb buffer layer. The surface morphology of the epilayer is found to change from 3D island growth to 2D growth and the electron mobility of the sample is increased from 5.2×103 to 1.1×104 cm2/V s by increasing the thickness of the SG layers. These results suggest that high crystalline quality and electron mobility of the InAs0.5Sb0.5 alloy can be achieved by the growth of thick SG InAsSb buffer layer accompanied with a thick InSb buffer layer. We have confirmed the improvement in the structural and electrical properties of the InAs0.5Sb0.5 epilayer by quantitative analysis of the epilayer having a 2.09 μm thick InSb buffer layer and 0.6 μm thickness of each SG layers.  相似文献   

10.
Electrical properties of undoped GaAs layers grown from Ga and Bi melts under identical conditions are compared as a function of growth temperature and pregrowth baking time. Identification of residual shallow donors and acceptors is performed by means of laser photoelectrical magnetic spectroscopy and low temperature photoluminescence. It is shown that a change of solvent metal results in complete alteration of major background impurities in grown epilayers due, mainly, to changes of distribution coefficients of these impurities. High purity, low compensation n-GaAs layers can be grown from Bi melt (epilayers with the Hall mobility of electrons μ77K ≈ 150000 cm2/V · sat n = 2.5 · 1014 cm−3 has been grown).  相似文献   

11.
MOVPE of GaN using a specially designed two-flow horizontal reactor   总被引:1,自引:0,他引:1  
GaN epilayers have been grown on (0001) sapphire substrates with a specially designed two-flow horizontal metalorganic vapor phase epitaxy (MOVPE) reactor. Epilayers with flat and smooth surfaces were obtained at the growth temperature of 950°C with relatively low source supply rates. This indicates a relatively high growth efficiency of the reactor. Characterization by photoluminescence, X-ray diffraction and Hall measurements reveal that the epilayers are of reasonably high quality.  相似文献   

12.
Electrical properties of InP, GaP, InGaP and AlGaP, grown by metalorganic molecular beam epitaxy (MOMBE) using ethyl-metalorganics (triethyl-indium, -gallium and -alluminum), are discussed in connection with the carbon background. More C atoms are incorporated into epilayers in the order of AlGaP, GaP and InP. The C atoms act as accepters in AlGaP and GaP epilayers, but they probably work as donors in InP. InGaP showed highly resistive or compensated possibly due to the amphoteric nature of C atoms.  相似文献   

13.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min.  相似文献   

14.
We have studied the epitaxial growth of AlN layers by plasma-assisted molecular beam epitaxy (MBE) on 6H–SiC substrate. Reflection high-energy electron diffraction (RHEED) was used to monitor the growth by the observation of the 2D–3D growth transition, respectively, in Al- and N-rich conditions. Special attention was given to the elimination of the Al droplets which often form in Al-rich conditions. Different growth procedures are proposed to avoid the appearance of these droplets while keeping a 2D growth. Each of the procedure gives AlN epilayers with identical crystalline quality and low surface roughness as measured, respectively, by X-ray diffraction and atomic force microscopy.  相似文献   

15.
Photoluminescence and Raman measurements are used to characterize the InxAl1-xAs (0.48 < × <0.573)epilayers grown on InP substrate by molecular beam epitaxy. It is found that as In composition, x, deviates too much from 0.52, misfit dislocations may be introduced. These dislocations will dramatically reduce the radiative efficiency of the InAlAs epilayers. Raman spectra become broader and more asymmetry due to alloy potential fluctuations as the mismatch becomes large.  相似文献   

16.
Novel nitrogen-based compounds for p-type doping of ZnSe have been studied. Photoluminescence spectra of epilayers doped with synthesized zinc amides Zn(NRR')2 and with corresponding amines HNRR' (R and R' are organic ligands) indicate an insufficient stability of the Zn---N bond preventing effective doping of the tested zinc amides. Doping efficiency is improved by replacing t-butyl groups (---CMe3) of the ligands by trimethylsilyl groups (---SiMe3). Nitrogen incorporation under usual growth conditions remained, however, too low for device applications.  相似文献   

17.
We report on the growth by metalorganic vapour phase epitaxy of high structural and optical quality ZnS, ZnSe and ZnS/ZnSe multiple quantum well (MQW) based heterostructures for applications to laser diodes operating in the 400 nm spectral region. High purity tBuSH, tBu2Se and the adduct Me2Zn:Et3N were used as precursors of S, Se and Zn, respectively. The effect of the different MOVPE growth parameters on the growth rates and structural properties of the epilayers is reported, showing that the crystallinity of both ZnS and ZnSe is limited by the kinetics of the incorporation of Zn, S and Se species at the growing surface. Very good structural and optical quality ZnS and ZnSe epilayers are obtained under optimized growth conditions, for which also dominant (excitonic) band-edge emissions are reported. The excellent ZnS and ZnSe obtained by our MOVPE growth matches the stringent requirements needed to achieve high quality ZnS/ZnSe MQWs. Their structural properties under optimized MOVPE conditions are shown to be limited mostly by the formation of microtwins, a result of the intrinsic high lattice mismatch involved into the ZnS/ZnSe heterostructure. Despite the large amount of defects found, the optical quality of the MQWs turned out to be high, which made possible the full characterization of their electronic and lasing properties. In particular, photopumped lasing emission up to 50 K in the 3.0 eV energy region are reported for the present MQWs heterostructures under power excitation density above 100 kW/cm2.  相似文献   

18.
InP substrates and epilayers grown by MOVPE have been studied by AFM. For different misorientation angles, we observed the surface of the substrate after annealing under phosphine (PH3) and of the epilayers under different growth conditions such as growth temperature Tg and trimethylindium (TMI) partial pressure. After annealing the terrace width corresponds to the nominal value of misorientation angle measured by X-ray diffraction. We observed different topographies and roughnesses for the grown layers corresponding to different growth modes. We propose, taking into account the roughness of the surface, a calculation of the step height and terrace width. For 2D nucleation (θ ≤ 0.2° and Tg = 500°C) and step flow mode, the roughness is low while it is increased by step bunching (θ ≥ 0.5° and Tg ≥ 580°C). Moreover we have examined the surface morphology for different misorientation angles and determined the influence of growth conditions (growth temperature, indium partial pressure) on the growth mechanism. At Tg = 580°C the increase of the TMI partial pressure in the reactor enhances the step bunching and leads to larger terraces.  相似文献   

19.
We have investigated the influence of basal stacking fault (BSF) and impurity related defect on the strain state of a-plane GaN epilayers. Four a-plane GaN epilayers were grown on r-plane sapphire using different growth strategies by metalorganic chemical vapor deposition. It is found that with a growing number of stacking fault, both the anisotropic in-plane strain and compressive out-plane strain along c-axis are relieved. Epitaxial lateral overgrowth with a TiN interlayer is an effective way to relieve in-plane strain and reduce BSF density. The extrapolated lattice parameters free of biaxial strain increase with the normalized yellow luminescence intensity. Hydrostatic strain induced by impurity-related defects is the possible cause of this phenomenon.  相似文献   

20.
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 μm. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号