首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using Green’s functions, the extended general displacement solutions of a three-dimensional crack problem in anisotropic electro-magneto-elastic (EME) bimaterials under extended loads are analyzed by the boundary element method. Then, the crack problem is reduced to solving a set of hypersingular integral equations (HIE) coupled with boundary integral equations. The singularity of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of HIE, and the exact analytical solutions of the extended singular stresses and extended stress intensity factors (SIFs) near the crack front in anisotropic EME bimaterials are given. Also, the numerical method of the HIE for a rectangular crack subjected to extended loads is put forward with the extended crack opening dislocation approximated by the product of basic density functions and polynomials. At last, numerical solutions of the extended SIFs of some examples are obtained.  相似文献   

2.
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF).  相似文献   

3.
A three-dimensional crack problem in electromagnetothermoelastic multiphase composites (EMTE-MCs) under extended loads is investigated in this paper. Using Green’s functions, the extended general displacement solutions are obtained by the boundary element method. This crack problem is reduced to solving a set of hypersingular integral equations coupled with boundary integral equations, in which the unknown functions are the extended displacement discontinuities. Then, the behavior of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of hypersingular integral equations. Analytical solutions for the extended singular stresses, the extended stress intensity factors (SIFs) and the extended energy release rate near the crack front in EMTE-MCs are provided. Also, a numerical method of the hypersingular integral equations for a rectangular crack subjected to extended loads is put forward with the extended displacement discontinuities approximated by the product of basic density functions and polynomials. In addition, distributions of extended SIFs varying with the shape of the crack are presented. The results show that the present method accurately yields smooth variations of extended SIFs along the crack front.  相似文献   

4.
The fractal-like finite element method (FFEM) is used to compute the stress intensity factors (SIFs) for different configurations of cracked/notched plates subject to in-plane shear and bending loading conditions. In the FFEM, the large number of unknown variables in the singular region around a notch tip is reduced to a small set of generalised co-ordinates by performing a fractal transformation using global interpolation functions. The use of exact analytical solutions of the displacement field around a notch tip as the global interpolation functions reduces the computational cost significantly and neither post-processing technique to extract SIFs nor special singular elements to model the singular region are required. The results of numerical examples of various configurations of cracked/notched plates are presented and validated via published data. Also, new results for cracked/notched plate problems are presented. These results demonstrate the accuracy and efficiency of the FFEM to compute the SIFs for notch problems under in-plane shear and bending loading conditions.  相似文献   

5.
利用杂交位移不连续法研究拉伸载荷作用下矩形板中单边缺陷-边裂纹(半圆孔裂纹和半方孔裂纹)问题,给出了这三种平面弹性裂纹问题的应力强度因子的详细数值解。通过半圆孔裂纹问题和半方孔裂纹问题与单边裂纹问题的应力强度因子的比较,发现半圆孔和半方孔对单边裂纹有屏蔽影响。此外,本文的研究结果表明,杂交位移不连续法用于分析平面弹性有限体中复杂裂纹问题的应力强度因子简单且又准确。  相似文献   

6.
朱伯靖  秦太验 《力学学报》2007,39(4):510-516
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转 化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题. 进而,通过主部 分析法精确地求得裂纹尖端光滑点附近的奇性应力场解析表达式. 然后,通过将裂纹表面 位移间断未知函数表达为位移间断基本密度函数与多项式之积,使用有限部积分法对超奇异 积分方程组建立了数值方法. 最后,通过典型算例计算,讨论了广义应力强度因子的变化规 律.  相似文献   

7.
This study evaluated notch H-integrals as well as stress intensity factors (SIFs) using image-correlation experiments for anisotropic materials. First, complex displacement and stress functions are deduced into an H-integral equation. Displacements and stresses from image-correlation experiments are then substituted into the H-integral equation to evaluate the notch SIFs. Experimental results compared with finite element analyses show that the SIFs evaluated using the current method are acceptably accurate.  相似文献   

8.
梯度材料中矩形裂纹的对偶边界元方法分析   总被引:2,自引:0,他引:2  
肖洪天  岳中琦 《力学学报》2008,40(6):840-848
采用对偶边界元方法分析了梯度材料中的矩形裂纹. 该方法基于层状材料基本解,以非裂纹边界的位移和面力以及裂纹面的间断位移作为未知量. 位移边界积分方程的源点配置在非裂纹边界上,面力边界积分方程的源点配置在裂纹面上. 发展了边界积分方程中不同类型奇异积分的数值方法. 借助层状材料基本解,采用分层方法逼近梯度材料夹层沿厚度方向力学参数的变化. 与均匀介质中矩形裂纹的数值解对比,建议方法可以获得高精度的计算结果. 最后,分析了梯度材料中均匀张应力作用下矩形裂纹的应力强度因子,讨论了梯度材料非均匀参数、夹层厚度和裂纹与夹层之间相对位置对应力强度因子的影响.   相似文献   

9.
提出了用插值矩阵法分析与各向异性材料界面相交的平面裂纹应力奇异性。基于V形切口尖端附近区域位移场渐近展开,将位移场的渐近展开式的典型项代入线弹性力学基本方程,得到关于平面内与复合材料界面相交的裂纹应力奇异性指数的一组非线性常微分方程的特征值问题,运用插值矩阵法求解,获得了平面内各向异性结合材料中与界面以任意角相交的裂纹尖端的应力奇异性指数随裂纹角的变化规律,数值计算结果与已有结果比较表明,本文方法具有很高的精度和效率。  相似文献   

10.
李俊  冯伟哲  高效伟 《力学学报》2016,48(2):387-398
相对于有限元法,边界单元法在求解断裂问题上有着独特的优势,现有的边界单元法中主要有子区域法和双边界积分方程法.采用一种改进的双边界积分方程法求解二维、三维断裂问题的应力强度因子,对非裂纹边界采用传统的位移边界积分方程,只需对裂纹面中的一面采用面力边界积分方程,并以裂纹间断位移为未知量直接用于计算应力强度因子.采用一种高阶奇异积分的直接法计算面力边界积分方程中的超强奇异积分;对于裂纹尖端单元,提供了三种不同形式的间断位移插值函数,采用两点公式计算应力强度因子.给出了多个具体的算例,与现存的精确解或参考解对比,可得到高精度的计算结果.   相似文献   

11.
Curve cracks lying along a parabolic curve in anisotropic body   总被引:1,自引:0,他引:1  
CURVECRACKSLYINGALONGAPARABOLICCURVEINANISOTROPICBODYHuYuan-tai(胡元太)ZhaoXing-hua(赵兴华)(ShanghaiUniversity;ShanghaiInstituteofA...  相似文献   

12.
This paper is concerned with the stress intensity factors (SIFs) of cracks emanating from an elliptical hole in an infinite or a finite plate under biaxial loads by using a boundary element method, which consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. A few numerical examples are included to show that the present approach is very efficient and accurate for the calculating the SIFs of crack problems in an infinite or a finite plate. The present numerical results of cracks emanating from an elliptical hole under biaxial loads can reveal the effect of the elliptical aspect ratio and the transverse load on the SIFs.  相似文献   

13.
轴对称环形片状界面裂纹问题分析   总被引:2,自引:0,他引:2  
讨论受拉伸载荷作用的轴对称环形片状界而裂纹问题.该问题归结为求解一组超奇异积分-微分方程.方程中的未知位移间断近似表示为基本密度函数与多项式之积,其中基本密度函数考虑到问题的对称性用二维界面裂纹精确解表示.在圆形片状裂纹的情况下,数值结果与现有理论解作比较的结果表明,数值结果与相应界面圆形片状裂纹和均质体圆形片状裂纹的精确解均吻合得很好.文中以图表形式给出应力强度因子与材料组合和几何条件之间的关系.  相似文献   

14.
In this paper, the three-dimensional (3D) interfacial fracture is analyzed in a one-dimensional (1D) hexagonal quasicrystal (QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle. Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation. The singularity of stresses near the crack front is investigated, and the stress intensity factors (SIFs) as well as energy release rates (ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.  相似文献   

15.
横观各向同性材料的三维断裂力学问题   总被引:4,自引:0,他引:4  
陈梦成  张安哥 《力学学报》2006,38(5):612-617
从三维横观各向同性材料弹性力学理论出发, 使用Hadamard有限部积分概念, 导出了三维状态下单位位移间断(位错)集度的基 本解. 在此基础上, 进一步运用极限理论, 将任意载荷作用下, 三维无限大横观各向 同性材料弹性体中, 含有一个位于弹性对称面内的任意形状的片状裂纹问题, 归结为求 解一组超奇异积分方程的问题. 通过二维超奇异积分的主部分析方法, 精确地求得了裂纹前沿光滑点附近的应力奇异指数和奇异应力场, 从而找到了以裂纹表面位移间断表示的应力强度因子表达式及裂纹局部扩展所提供 的能量释放率. 作为以上理论的实际应用,最后给出了一个圆形片状裂纹问题 的精确解例和一个正方形片状裂纹问题的数值解例. 对受轴对称法向均布载荷作用下圆形片状裂纹问题, 讨论了超奇异积分方程的精确求解方法, 并获得了位移间断和应力强度因子的封闭解, 此结果与现有理论解完全一致.  相似文献   

16.
两种各向异性材料界面共线裂纹的反平面问题   总被引:2,自引:1,他引:2  
本文研究两种各向异性材料界面共线裂纹的反平面剪切问题。利用复变函数方法,提出了一般问题公式和某些实际重要问题的封闭形式解。考察了裂纹尖端附近的应力分布并给出了应力强度因子公式。从本文解签的特殊情形,可以直接导出两种各向同性材料界面裂纹,均匀各向异性材料共线裂纹以及均匀各向同性材料共线裂纹的相应问题公式,其中包括已有的经典结果。  相似文献   

17.
This contribution presents an extended hypersingular intergro-differential equation (E-HIDE) method for modeling the 3D interface crack problem in fully coupled electromagnetothermoelastic anisotropic multiphase composites under extended electro-magneto-thermo-elastic coupled loads through theoretical analysis and numerical simulations. First, based on the extended boundary element method, the 3D interface crack problem is reduced to solving a set of E-HIDEs coupled with extended boundary integral equations, in which the unknown functions are the extended displacement discontinuities. Then, the behavior of the extended singular stress indices around the interface crack front terminating at the interface is analyzed by the extended main-part analysis. The extended stress intensity factors near the crack front are defined. In addition, a numerical method for a 3D interface crack problem subjected to extended loads is proposed, in which the extended displacement discontinuities are approximated by the product of basic density functions and polynomials. Finally, the radiation distribution of extended stress intensity factors at the interface crack surface are calculated, and the results are presented toward demonstrating the applicability of the proposed method.  相似文献   

18.
By means of the theory of complex functions, fracture dynamics problems of mode I semi- infinite crack for anisotropic orthotropic body were researched. Analytical solutions of stress, displacement, and dynamic stress intensity factor under the action of moving increasing loads Px 3/t 3, Pt 4/x 3, respectively, are very easily obtained utilizing the approaches of self-similar functions. In the light of relevant material’s coefficients, the alterable rule of dynamic stress intensity factor was depicted very well. The correlative closed solutions are attained based on the Riemann–Hilbert problems. After those analytical solutions were applied by the superposition principle, the solutions of discretional complex problems could be attained.  相似文献   

19.
Two displacement formulation methods are presented for problems of planar anisotropic elasticity. The first displacement method is based on solving the two governing partial differential equations simultaneously/ This method is a recapitulation of the orignal work of Eshelby, Read and Shockley [7] on generalized plane deformations of anisotropic elastic materials in the context of planar anisotropic elasticity.The second displacement method is based on solving the two governing equations separately. This formulation introduces a displacement function, which satisfies a fourth-order partial differential equation that is identical in the form to the one given by Lekhnitskii [6] for monoclinic materials using a stress function. Moreover, this method parallels the traditional Airy stress function method and thus the Lekhnitskii method for pure plane problems. Both the new approach and the Airy stress function method start with the equilibrium equations and use the same extended version of Green's theorem (Chou and Pagano [13], p. 114; Gao [11]) to derive the expressions for stress or displacement components in terms of a potential (stress or displacement) function (see also Gao [10, 11]). It is therefore anticipated that the displacement function involved in this new method could also be evaluated from measured data, as was done by Lin and Rowlands [17] to determine the Airy stress function experimentally.The two different displacement methods lead to two general solutions for problems of planar anisotropic elasticity. Although the two solutions differ in expressions, both of the depend on the complex roots of the same characteristic equation. Furthermore, this characteristic equation is identical to that obtained by Lekhnitskii [6] using a stress formulation. It is therefore concluded that the two displacement methods and Lekhnitskii's stress method are all equivalent for problems of planar anisotropic elasticity (see Gao and Rowlands [8] for detailed discussions).  相似文献   

20.
Based on the assumption that the elastic strain of electrostrictive materials is a higher-order small quantity, this paper studies the 3D problem of an infinite electrostrictive solid with a flat elliptical crack which is electrically permeable. According to existing solutions of similar problems in pure elastic materials, with the displacement function method, we first derived explicit expression for displacement potential function and obtained stress field near the crack and open displacement of crack surface. Then, the general solution for the stress intensity factor was derived, and the corresponding solutions were also presented for a penny-shaped crack and a permeable line-crack as two special cases of the present problem. Finally, numerical results were given to discuss the effect of environment at infinity and electric field inside the crack on the stress-intensity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号