首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Excess isobaric heat capacities of mixture (2-methoxyethanol+water) were measured at T=298.15 K and excess enthalpies at T=293.15 and 298.15 K. Excess enthalpies were extremely exothermic, up to -1290 J mol-1 atT=293.15 K and -1240 J mol-1 at T=298.15 K. Excess isobaric heat capacities were positive and very large, approximately 9 J K-1 mol-1 at the maximum. In contrast to the data reported by Page and coworkers, the excess heat capacity data were positive in the entire composition range and there was no change in their signs. Consistently, no crossing was found between the curves of excess enthalpies at T=298.15 and 293.15 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Excess enthalpies and excess volumes were determined at 298.15 K for: dimethoxymethane+heptane, diethoxymethane+heptane, 1,1-dimethoxyethane+heptane, 1,1-diethoxyethane+heptane, 2,2-dimethoxypropane+heptane and 1,1-diethoxypropane+heptane.  相似文献   

3.
The water activities for aqueous solutions of Li2SO4(aq), Na2SO4(aq), K2SO4(aq), (NH4)2SO4(aq), and sulphates MgSO4(aq), MnSO4(aq), NiSO4(aq), CuSO4(aq), and ZnSO4(aq) were determined experimentally at a temperature of 298.15 K with a hygrometric method, at molalities in the range from 0.1 mol·kg−1 to saturation. The osmotic coefficients are calculated from these results. The coefficients of Pitzer’s model was used to fit the osmotic coefficients for each salt solution. These parameters were used to predict solute activity coefficients for the salts studied.  相似文献   

4.
Emf measurements were made on the cell without liquid junction: Li?ISE LiCl(m1), Li2SO4(m2) Ag/AgCl. The performances of the electrode pairs constructed in our laboratory were tested and exhibited near-Nernstian behavior. The mean activity coefficients of LiCl for the system Li+?Cl??SO 4 2? ?H2O have been investigated by the emf values at temperatures of 0, 15, 35°C and constant total ionic strengths of 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 5.0 mol·kg?1. The activity coefficients decrease with increasing temperature and the ionic strength fraction of Li2SO4 in the mixtures. The thermodynamic properties are interpreted by use of Harned's empirical equations and Pitzer's ion interaction approach including the contribution of higher order electrostatic terms. The experimental results obey Harned's rule and are described by using Pitzer equations satisfactorily. The activity coefficients of Li2SO4, the osmotic coefficients and the excess free energies of mixing for the system in the experimental temperature range were reported.  相似文献   

5.
李积才  曾忠民  王鲁英 《化学学报》1995,53(11):1071-1075
用连续滴定量热法研究Li2SO4-K2SO4-MgSO4-H2O体系及次级体系Li2SO4-K2SO40H2O、Li2SO4-MgSO4-H2O和K2SO4-MgSO4-H2O 298.15K时在离子强度为15-0.1范围内的比热容和稀释热, 并结合Debye-Huckel焓极限公式研究离子强度在15-0.0001范围内的表观摩尔焓。  相似文献   

6.
The crystal structure of alkali-metal dioxovanadium(V) sulfates AVO2SO4, where A is K or Rb, has been determined based on a combination of neutron and X-ray diffraction data. The compounds are isostructural and have an orthorhombic lattice (space group P212121, Z = 4) with unit cell parameters a = 11.1004(2) and 10.8193(1) Å; b = 8.2626(2) and 8.9042(1) Å; c = 5.4772(1) and 5.5722(1) Å, respectively. The structures are of the chain type. Zigzag chains are formed by vertex-sharing VO6 octahedra. Sulfate groups SO4 link neighboring chains and form a spatial framework with cavities accommodating alkali-metal atoms with CN = 9 (K) and 8 (Rb). IR and Raman spectroscopy data are reported.  相似文献   

7.
The Hückel equation used in this study to correlate the experimental activities of dilute alkali metal nitrate solutions up to a molality of about 1.5 mol · kg−1 contains two parameters being dependent on the electrolyte: B [that is related closely to the ion-size parameter (a∗) in the Debye–Hückel equation] and b1 (this parameter is the coefficient of the linear term with respect to the molality and this coefficient is related to hydration numbers of the ions of the electrolyte). In more concentrated solutions up to a molality of 7 mol · kg−1, an extended Hückel equation was used, and it contains additionally a quadratic term with respect to the molality and the coefficient of this term is parameter b2. All parameter values for the Hückel equations of LiNO3, NaNO3, and KNO3 were determined from the isopiestic data measured by Robinson for solutions of these salts against KCl solutions [J. Am. Chem. Soc. 57 (1935) 1165]. In these estimations, the Hückel parameters determined recently for KCl solutions [J. Chem. Eng. Data 54 (2009) 208] were used. The Hückel parameters for RbNO3 and CsNO3 were determined from the reported osmotic coefficients of Robinson [J. Am. Chem. Soc. 59 (1937) 84]. The resulting parameter values were tested with the vapour pressure and isopiestic data existing in the literature for alkali metal nitrate solutions. These data support well the recommended Hückel parameters up to a molality of 7.0 mol · kg−1 for LiNO3 and NaNO3, up to 4.5 mol · kg−1 for RbNO3, up to 3.5 mol · kg−1 for KNO3, and up to 1.4 mol · kg−1 for CsNO3 solutions. Reliable activity and osmotic coefficients of alkali metal nitrate solutions can, therefore, be calculated by using the new Hückel equations, and they have been tabulated at rounded molalities. The activity and osmotic coefficients obtained from these equations were compared to the values suggested by Robinson and Stokes [Electrolyte Solutions, second ed., Butterworths Scientific Publications, London, 1959], to those calculated by using the Pitzer equations with the parameter values of Pitzer and Mayorga [J. Phys. Chem. 77 (1973) 2300], and to those calculated by using the extended Hückel equation of Hamer and Wu [J. Phys. Chem. Ref. Data 1 (1972) 1047].  相似文献   

8.
9.
The preferential solvation parameters of methocarbamol in dioxane + water, ethanol + water, methanol + water and propylene glycol + water mixtures are derived from their thermodynamic properties by using the inverse Kirkwood–Buff integrals (IKBI) method. This drug is sensitive to solvation effects, being the preferential solvation parameter δx1,3, negative in water-rich and co-solvent-rich mixtures, but positive in mixtures with similar proportions of solvents, except in methanol + water mixtures, where positive values are found in all the methanol-rich mixtures. It is conjecturable that the hydrophobic hydration around the non-polar groups in water-rich mixtures plays a relevant role. Otherwise, in mixtures of similar solvent compositions, the drug is mainly solvated by co-solvent, probably due to the basic behaviour of the co-solvents; whereas, in co-solvent-rich mixtures, the preferential solvation by water could be due to the acidic behaviour of water. Nevertheless, the specific solute–solvent interactions present in the different binary systems remain unclear.  相似文献   

10.
273.15K时LiCl-Li2SO4-H2O体系热力学性质的等压研究   总被引:2,自引:0,他引:2  
0℃下用改进的等压设备和改进的实验方法测定了纯水溶液(LiCl 0.5~9.2mol·kg-1,Li2SO40.3~2.5mol·kg-1)以及混合水溶液(离子强度0.5~9.5mol·kg-1)的水活度和渗透系数.该体系的等水活度线与Zdanovskii规则非理想混合溶液表达式的标准偏差为0.0088,当Li2SO4溶液达到饱和后,用Zdanovskii规则扩展式计算,标准偏差为0.0027.根据Pitzer离子相互作用模型对实验数据进行了理论分析,用本文和不同来源的文献数据拟合求取了0℃下该体系的Pitzer纯盐参数和混合参数,计算值与实验值相吻合.  相似文献   

11.
12.
The concentration dependences of the differential enthalpies of solution were measured along several crystallization paths in the above-mentioned system, and the enthalpies of crystallization of mixed crystals occurring as a stable solid phase in the system were calculated on this basis. The obtained results confirmed the existence of a region of breaking continuity in the equilibrium solid phases.
Zusammenfassung Für die obengennanten Systeme wurden, mehrere Kristallisationsradien entlang, die Messungen der Konzentrationsabhängigkeiten durchgeführt, die es unter differentiellen Lösungsenthalpien gibt. Auf dieses Grundlage wurden die Kristallisationenthalpien von Mischkristallen, die als stabile feste Phase vorkommen, bestimmt.Die erreichten Ergebnisse bestätigen die Tatsache, daß ein unterbrochenes Gebiet in den gleichgewichten festen Phasen vorkommt.
  相似文献   

13.
The heat capacity and density of solutions of lithium chloride, bromide, and iodide in N-methylpyrrolidone (I) were determined by calorimetry and densimetry techniques. The standard partial molar heat capacities and volumes ( $\overline {C^\circ _{p2} } $ and $\overline {V^\circ _2 } $ ) of lithium halides in I were calculated. The $\overline {C^\circ _{pi} } $ and $\overline {V^\circ _i } $ values for halogen and lithium ions in I were determined. The coordination numbers of the Li+, Cl?, Br?, and I? ions in solutions in I at 298.15 K were calculated.  相似文献   

14.
水溶性高聚物的双水相体系可用于纯化一些无机盐,获得高纯晶体。由于高聚物的存在会减小盐在溶液中的溶解度,从而可能析出晶体。本文采用自制的相平衡装置,测定了硫酸铯/聚乙二醇(PEG1000,4000,10000)双水相体系在298.15K时的等温平衡溶解度。  相似文献   

15.
Isopiestic vapor-pressure measurements were made for Li2SO4(aq) from 0.1069 to 2.8190 mol?kg?1 at 298.15 K, and from 0.1148 to 2.7969 mol?kg?1 at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer’s ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li2SO4?H2O(cr). Solubilities of Li2SO4?H2O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13±0.04 mol?kg?1 was used to evaluate the thermodynamic solubility product K s(Li2SO4?H2O, cr, 298.15 K) = (2.62±0.19) and a CODATA-compatible standard molar Gibbs energy of formation Δf G m o (Li2SO4?H2O, cr, 298.15 K) = ?(1564.6±0.5) kJ?mol?1.  相似文献   

16.
电动势法对LiCl-Li~2SO~4-H~2O体系25℃热力学性质研究   总被引:4,自引:0,他引:4  
王瑞陵  姚燕  张忠  吴国梁 《化学学报》1993,51(6):534-542
用自制的锂离子选择电极和经典Ag-AgCl电极,测定25℃时LiCl-Li~2SO~4-H~2O三元体系中离子强度0.01~6.0mol.kg^-1的LiCl平均活度系数.,由实验数据,用多元线性回归法求取Pitzer方程、Harned方程的离子作用参数和系数,并用上述方程计算LiCl在混合溶液中的平均活度系数,分别以Inγ~±LiCl和logγ~±LiCl的形式与实验值进行比较,标准偏差均小于0.008.本工作测得的LiCl平均活度系数的自然对数与等压法测定的渗透系数拟合的Pitzer方程参数计算值比较,标准偏差为0.0097.同时计算了Li~2SO~4在该体系中的平均活度系数和混合溶液的渗透系数以及混合超额自由能.  相似文献   

17.
Densities, speeds of sound and the refractive indices of binary systems containing alkanes (hexane, heptane, octane and nonane) with aromatic compounds (benzene, toluene and ethylbenzene) at T = 283.15 and 298.15 K under atmospheric pressure were determined over the whole composition range. From the experimental results, the derived and excess properties (excess molar volumes, isentropic compressibility, excess molar isentropic compressibility and refractive index deviations) at T = 283.15 and 298.15 K were calculated and satisfactorily fitted to the Redlich–Kister equation.  相似文献   

18.
Activities of water in the K2SO4+Rb2SO4+H2O system at 25°C have been measured isopiestically. On the basis of the experimental activities of water ternary parameters of the Pitzer equations have been calculated. According to our data and experimental solubility data from the literature, continous solid solutions between K2SO4 and Rb2SO4 are formed in this system. With the use of the Guggenheim polynomial for simulating excess functions of solid solutions on the basis of the original and literature solubility data, excess Gibbs energies of solid solution formation as well as a solubility diagram have been calculated. Results of the solubility calculation are in good agreement with experimental data.  相似文献   

19.
To obtain reliable thermodynamic data for Na2S(s), solid-state EMF measurements of the cell Pd(s)|O2(g)|Na2S(s), Na2SO4(s)|YSZ| Fe(s), FeO(s)|O2(g)ref| Pd(s) were carried out in the temperature range 870 < T/K < 1000 with yttria stabilized zirconia as the solid electrolyte. The measured EMF values were fitted according to the equation Efit/V (±0.00047) = 0.63650  0.00584732(T/K) + 0.00073190(T/K) ln (T/K). From the experimental results and the available literature data on Na2SO4(s), the equilibrium constant of formation for Na2S(s) was determined to be lg Kf(Na2S(s)) (±0.05) = 216.28  4750(T/K)−1  28.28878 ln (T/K). Gibbs energy of formation for Na2S(s) was obtained as ΔfG(Na2S(s))/(kJ · mol−1) (±1.0) = 90.9  4.1407(T/K) + 0.5415849(T/K) ln (T/K). By applying third law analysis of the experimental data, the standard enthalpy of formation of Na2S(s) was evaluated to be ΔfH(Na2S(s), 298.15 K)/(kJ · mol−1) (±1.0) = −369.0. Using the literature data for Cp and the calculated ΔfH, the standard entropy was evaluated to S(Na2S(s), 298.15 K)/(J · mol−1 · K−1) (±2.0) = 97.0.  相似文献   

20.
The effect of tetra-n-alkylammonium bromides, R4NBr (R=CH3, C2H5, C4H9) on the densities, ρ, of glycine, l-alanine and glycylglycine are reported at T=298.15 K. The apparent molar volumes of amino acids in aqueous tetra-n-alkylammonium salts, φVAJW, and of tetra-n-alkylammonium bromides in aqueous amino acids and peptide, φVJAW, are calculated from the measured densities. Both φVAJW and φVJAW have been analysed accurately using a simple equation. Positive transfer volumes are observed for glycine, l-alanine and glycylglycine in the presence of R4NBr. Tetra-n-butylammonium bromide shows almost double increase in the transfer volumes of amino acids or peptide than tetramethyl- or tetraethylammonium bromides. Negative transfer volumes for the tetra-n-alkylammonium bromide salts are noted in aqueous amino acids or peptide due to large tetra-n-alkylammonium cation undergoing hydrophobic hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号