首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
This study formulates a micromechanical model for predicting effective viscoelastic–viscoplastic responses of composites. The studied composites consist of solid spherical particle reinforcements dispersed in a homogeneous matrix. The particle constituent is assumed linear elastic, while the matrix exhibits combined viscoelastic–viscoplastic responses. The Schapery integral model is used for the 3D isotropic non-linear viscoelastic responses. Two viscoplastic models are considered: the Perzyna model, having a rate-independent yield surface and an overstress function, and the Valanis endochronic model based on an irreversible thermodynamics without a yield surface. The Valanis model is suitable for materials when viscoplastic responses occur at early loadings (small stress levels). A unit-cell model with four particle and polymer sub-cells is generated to obtain homogenized responses of the particle-reinforced composites. Available micromechanical models and experimental data in the literature are used to verify the proposed micromechanical model in predicting effective time-dependent and inelastic responses of composites. Field variables in the homogenized composites are compared to the ones in heterogeneous composites. The heterogeneous composites, having detailed particle geometries, are modeled using finite element (FE) method.  相似文献   

2.
Two grades of Dyneema~?composite laminates with the commercial designations of HB26 and HB50 were cut into blocks with or without an edge crack and compressed in the longitudinal fiber direction. The cracked and uncracked specimens show similar compressive responses including failure pattern and failure load. The two grades of Dyneema~? composites exhibits different failure modes: a diffuse, sinusoidal buckling pattern for Dyneema~? HB50 due to its weak matrix constituent and a kink band for Dyneema~? HB26 due to its relatively stronger matrix constituent. An effective finite element model is used to simulate the collapse of Dyneema~? composites, and the sensitivity of laminate compressive responses to the overall effective shear modulus, interlaminar shear strength, thickness and imperfection angle are investigated. The change of failure mode from kink band to sinusoidal buckling pattern by decreasing the interlaminar shear strength is validated by the finite element analyses.  相似文献   

3.
A particle–resin suspension impregnation model is used for analyzing the mold filling process in compression resin transfer molding (CRTM) of particle-filled, continuous fiber composites. The model is based on Darcy flow coupled with particle filtration and is applicable to two-dimensional impregnation through isotropic/anisotropic fiber preforms. Comparisons with simple analytical solutions and experimental results from the literature were made to validate the numerical solution. Simulations showed that CRTM was advantageous over resin transfer molding (RTM) for smaller non-homogeneity in composite microstructure, when particle filtration was high. Limits on certain process parameters were observed beyond which molding pressures in CRTM became comparable with those in RTM. The preform anisotropy was effective in the particle distribution profile. The choice of inlet gate configuration in CRTM was found influential in the particle distribution homogeneity and molding pressures. The developed modeling tool can be extended to analyze any composite liquid molding process involving particle fillers.  相似文献   

4.
The dynamic stability of a tapered viscoelastic wing subjected to unsteady aerodynamic forces is investigated. The wing is considered as a cantilever tapered Euler–Bernoulli beam. The beam is made of a linear viscoelastic material where Kelvin–Voigt model is assumed to represent the viscoelastic behavior of the material. The governing equations of motion are derived through the extended Hamilton’s principle. The resulting partial differential equations are solved via Galerkin’s method along with the classical flutter investigation approach. The developed model is validated against the well-known Goland wing and HALE wing and good agreement is obtained. Different solution methods, namely; the k method, the p-k method, and the flutter determinant method are compared for the case of elastic wing. However, when the viscoelastic damping is introduced, the k and p-k methods become less effective. The flutter determinant method is modified and employed to carry out non-dimensional parametric study on the Goland wing. The study includes the effects of parameters such as the taper ratio, the density ratio, the viscoelastic damping of wing structure and many other parameters on the flutter speed and flutter frequency. The study reveals that a tapered wing would be more dynamically stable than a uniform wing. It is also observed that the viscoelastic damping provides wider stability region for the wing. The investigation shows that the density ratio, bending-to-torsion frequency ratio, and the radius of gyration have significant effects on the dynamic stability of the wing. Based on the obtained results, a wing with an elastic center and inertial center that are located closer to the mid-chord would be more dynamically stable.  相似文献   

5.
This work aims at determining the overall response of a two-phase elastoplastic composite to isotropic loading. The composite under investigation consists of elastic particles embedded in an elastic perfectly plastic matrix governed by the Mohr–Coulomb yield criterion and a non-associated plastic flow rule. The composite sphere assemblage model is adopted, and closed-form estimates are derived for the effective elastoplastic properties of the composite either under tensile or compressive isotropic loading.In the case when elastic particles reduce to voids, the composite in question degenerates into a porous elastoplastic material. The results obtained in the present work are of interest, in particular, for soil mechanics.  相似文献   

6.
A damage model for a composite structure under high intensity dynamic loading is presented. The model is based on a thermodynamic micromechanic approach, which is formulated using the conservation laws and the energy balance equations (the first and second laws of thermodynamics). A homogenization or averaging technique is implemented in the development to simplify the representation of the non-homogeneous material. The metal–matrix composite's inelastic response is modeled using elastic–plastic constitutive relations considering finite plastic strain and damage effect. The damage model is validated with experimental data available in the literatures, and it shows fairly good agreement. A parametric study demonstrating the characteristics of the damage model is also presented.  相似文献   

7.
Microcracks have great significance for shear strength of brittle rock in compression. A major challenge of this area is to establish the correlation of microcracks and macroscopic shear strength. A new micro–macro method is presented to predict the shear strength of brittle rock in compression. This method incorporates the microcrack model suggested by Ashby, Mohr–Coulomb failure criterion and a crack-strain relation. This crack–strain relation is presented to link the crack growth and axial strain by combining the micro and macro definitions from rock damage. The shear strength and stress–strain relationship of Jinping marble are theoretically investigated in detail. The rationality of this suggested method is verified by using the experimental results founded on Jinping marble. Effects of the initial microcrack size, friction coefficient and confining pressure on internal friction angle, cohesion, and shear strength are also discussed.  相似文献   

8.
9.
In this paper, by means of the Oore–Burns weight function, we have obtained a general explicit equation for the Stress Intensity Factors (SIFs) of a nearly circular internal crack subjected to remotely uniform tensile stress. We have expanded the crack border in Fourier series and have derived an analytic solution for the SIF at any point on the front crack, in terms of the homotopic transformation of a disk. More precisely, we have given the first order approximation of the SIF in closed form. From a theoretical point of view, the proposed equation can only be used for a small deviation from the circle, however some tests on elliptical cracks have shown that the equation also works well for slender ellipses (up to a ratio of 0.4 between the two semi-axes). Finally, as an example, we have given a suitable explicit formula for SIF derived from general equations for triangular cracks and square-like cracks.  相似文献   

10.
We present a unified constitutive model capable of predicting the steady shear rheology of polystyrene (PS)–nanoparticle melt composites, where particles can be rods, platelets, or any geometry in between, as validated against experimental measurements. The composite model incorporates the rheological properties of the polymer matrix, the aspect ratio and characteristic length scale of the nanoparticles, the orientation of the nanoparticles, hydrodynamic particle–particle interactions, the interaction between the nanoparticles and the polymer, and flow conditions of melt processing. We demonstrate that our constitutive model predicts both the steady rheology of PS–carbon nanofiber composites and the steady rheology of PS–nanoclay composites. Along with presenting the model and validating it against experimental measurements, we evaluate three different closure approximations, an important constitutive assumption in a kinetic theory model, for both polymer–nanoparticle systems. Both composite systems are most accurately modeled with a quadratic closure approximation.  相似文献   

11.
A three-phase cylindrical model for analyzing fiber composite subject to in-plane mechanical load under the coupling effects of multiple physical fields (thermo, electric, magnetic and elastic) is presented. By introducing an eigenstrain corresponding to the thermo-electro-magnetic-elastic effect, the complex multi-field coupling problem can be reduced to a formal in-plane elasticity problem for which an exact closed form solution is available. The present three-phase model can be applied to fiber/interphase/matrix composites, such that a lot of interesting thermo-electro-magnetism and stress coupling phenomena induced by the interphase layer are revealed. The present model can also be applied to fiber/matrix composites, in terms of which a generalized self-consistent method (GSCM) is developed for predicting the effective properties of piezoelectric–magnetic fiber reinforced composites. The effective piezoelectric, piezomagnetic, thermoelectric and magnetoelectric moduli can be expressed in compact explicit formulae for direct references and applications. A comparison of the predictions by the GSCM with available experimental data is presented, and interesting magnification effects and peculiar product properties are discussed. As a theoretical basis for the GSCM, the equivalence of the three sets of different average field equations in predicting the effective properties are proved, and this fact provides a strong evidence of mathematical rigor and physical realism in the formulation.  相似文献   

12.
13.
Ma  Zongcheng  Hu  Junhua  Feng  Jinfu  Liu  An  Chen  Guoming 《Nonlinear dynamics》2020,99(2):1195-1210
Nonlinear Dynamics - A trans-media aerial underwater vehicle (TMAUV) could break through the single-medium limitation with the abilities to fly in the air, navigate underwater, and cross the...  相似文献   

14.
Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. It is significant to analyze the localization of deformation and damage, and to study the complete stress–strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading. On the basis of micromechanics, the complete stress–strain relation including linear elasticity, nonlinear hardening, rapid stress drop and strain softening is obtained. The behaviors of rapid stress drop and strain softening are due to localization of deformation and damage. The constitutive model, which analyze localization of deformation and damage, is distinct from the conventional model. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号