首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Ag6PS5Br and Ag6PS5I argyrodites crystallize in a face-centered-cubic lattice at room temperature. Both compounds exhibit purely Arrhenius behavior throughout the temperature range 150-400 K with similar activation energies of about 0.23 eV. Cu6PSe5Br and Cu6PSe5I also crystallize in a face-centered-cubic structure at room temperature. Cu6PSe5Br exhibits a distinctive anomaly in electrical conductivity near 286 K while Cu6PSe5I undergoes a first-order electrical phase transition near 265 K. Their activation energies above room temperature are 0.13 and 0.30 eV, respectively.  相似文献   

2.
Mechanical properties of Cu6PS5Br single crystals and composites based on them have been investigated by the internal friction method. The measurements of the internal friction and the shear modulus have been performed in the temperature range of 80–300 K at deformation frequencies of 10–100 mHz in a mode of forced torsional vibrations. The maxima caused by the superionic and ferroelastic phase transitions have been found in temperature dependences of the internal friction. It has been shown that a more than two-fold decrease in the shear modulus with increasing temperature in the range of 150–230 K is caused by mobility unfreezing in the cation sublattice of the Cu6PS5Br single crystal during the superionic phase transition. An abrupt (more than threefold) increase in the shear modulus upon heating in the range of 260–270 K is caused by the ferroelastic phase transition of the Cu6PS5Br single crystal. Parameters of the internal friction of this single crystal in the course of mentioned phase transitions have been determined.  相似文献   

3.
Cu6PS5Br superionic crystals were implanted by sulphur ions. The effect of ion implantation on the phase transition (PT) temperatures in Cu6PS5Br is observed from isoabsorption studies of the optical absorption edge. The dependences of the ferroelastic PT temperature on the ion fluence are analysed.  相似文献   

4.
Raman spectroscopy and differential thermal analysis (DTA) and thermogravimetric analysis have been carried out on Cu-doped KH2PO4 (Cu-KDP). X-ray diffraction powder data reveal that the structure of the KDP crystal does not change with the additive Cu2+ ion. DTA analysis and Raman study of Cu-KDP as a function of temperature reveal that this compound undergoes two phase transitions at about Ttr =453 and 473 K. The electrical conductivity measurements on polycrystalline pellet of Cu-KDP (5) are performed from room temperature (RT) up to 495 K. Only one phase transition is observed at 470 K. The activation energy in the migration is 0.42 eV in the temperature range from RT to 470 K. For temperature above 470 K, the activation energy of the superprotonic phase is 1.87 eV.  相似文献   

5.
Cu6PS5I superionic crystals, grown using chemical vapour transport, were implanted by sulphur ions. The ion implantation effect on the phase transitions is studied by temperature isoabsorption investigation of the optical absorption edge. For the implanted crystals the optical absorption edge shape is studied in the temperature range 77-320 K, the parameters of exciton-phonon interaction, resulting in the Urbach behaviour of the optical absorption edge, are determined, the temperature dependences of the optical pseudogap and Urbach energy are obtained. The implantation effect on the ordering-disordering processes in Cu6PS5I superionic conductors is studied.  相似文献   

6.
Composite samples based on microcrystalline Cu6РS5I superionic conductors, embedded in matrices of polyvinylacetate, epoxy and conducting glue, are produced. Temperature and frequency studies of complex electric conductivity and dielectric permittivity as well as dielectric loss of the obtained composites are carried out. The effect of differences in the composite production technology on the temperature of a second-order phase transition in the superionic phase, values of electrical conductivity, activation energy and dielectric permittivity is shown.  相似文献   

7.
Nanocrystalline Cu6PS5I powder has been mixed with As2S3 semiconducting glass to obtain nanocomposite. Surface of the obtained sample has been photographed by scanning electron microscope. Electrical properties of Cu6PS5I–As2S3 nanocomposite have been measured using two- and four-probe methods. The obtained results were analyzed by fitting the experimental data to the equivalent circuit model. Warburg impedance element described Cu6PS5I nanoparticles, and the phase transition of this material was indicated.  相似文献   

8.
The electrical conductivity at 10GHz, the dielectric constant, and the thermoelectric power (TEP) of [(C6H5)3PCH3]+(TCNQ)-2, from 230 up to 400 K, have been measured. This organic quasi-one-dimensional solid undergoes a first order phase transition at 314 K. At the transition the conductivity increases by a factor of 2.2 and the activation energy drops to 0.26 from 0.31 eV. At 314 K TEP decreases abruptly from -75 to -60μVK-1 and remains almost constant for T > 314 K. The dielectric permeability ?0 is constant and equal to 5 in the low temperature phase, increases abruptly by 7% at the transition, and then depends strongly on temperature in the high temperature phase. Results of the high temperature phase are interpreted in terms of a strongly correlated salt.  相似文献   

9.
The temperatures of phase transitions in crystals of the Cu6PS5I1 ? x Cl x solid solutions have been determined and the x-T phase diagram of the crystals has been constructed using isoabsorption and polarization-optical measurements. The absorption edge of the Cu6PS5I1 ? x Cl x crystals has been investigated in the temperature range 77–320 K and at high absorption levels. The parameters of the Urbach absorption edge and exciton-phonon interaction in the Cu6PS5I1 ? x Cl x crystals have been determined, and the influence of the compositional disorder on these crystals has been analyzed.  相似文献   

10.
This letter discusses the thermoelectric properties of Cu3PSe4 and Cu3PS4 compounds, using the Ab initio calculations. These compounds are predicted to be good thermoelectric materials thanks to the nature of their band edge states. Seebeck coefficient of Cu3PSe4 exhibits a maximum value of 1256 µV/K at roopm temperature, whereas it is 2389 µV/K for Cu3PS4. Furthermore, the electrical conductivity is significantly enhanced with doping level while the electronic thermal conductivity is weakly increased. Besides, the factor of merit of these compounds shows a value around the unity only at low doping levels. Hence, this predicts that these compounds may present excellent thermoelectric properties, therefore they could be considered as alternatives for thermoelectric applications.  相似文献   

11.
Single crystals of Cu7GeSe5I superionic conductor were grown by chemical transport. Their electrical conductivity in the frequency range 1.0×106–1.2×109 Hz and in the temperature range 196–295 K was measured. Cu7GeSe5I crystal is shown to exhibit a rather high electrical conductivity (σ295=64.0 S/m at 295 K) and a low activation energy (ΔEa=0.125 eV). Optical absorption edge of Cu7GeSe5I crystals in the temperature range 77–300 K was studied, the temperature dependences of the optical pseudogap and Urbach energy being obtained. The effect of different types of disordering on the Urbach absorption edge and electron–phonon interaction parameters was investigated.  相似文献   

12.
The effect of hydrostatic (P=10–400 MPa) and uniaxial σ=0–5.8 MPa) pressures on birefringence Δn of Cu6PS5Br single crystals at the wavelength λ=0.6328 μm has been studied below the temperature of the ferroelastic phase transition (T<268 K). It is found that Δn linearly depends on pressure. The obtained data are analyzed.  相似文献   

13.
Investigation results of dielectric (20?Hz–1?MHz) properties of layered CuBiP2Se6 crystals are presented. The temperature dependence of the static dielectric permittivity reveals the first-order “displacive” antiferroelectric phase transition at T c?=?136?K. In the paraelectric phase, at low frequencies, dielectric spectra are highly influenced by the high ionic conductivity with the activation energy of 2473?K (0.21?eV). In the antiferroelectric phase the electrical conductivity and its activation energy (531.1?K (0.045?eV)) are considerably smaller. At low temperatures, the temperature behaviour of the distribution of relaxation times reveals complex freezing phenomena. A part of long relaxation time distribution is strongly affected by external direct current (DC) electric field and it is obviously caused by antiferroelectric domain dynamics.  相似文献   

14.
In this work, an economical, surfactant-free and scalable solution synthesis method at room temperature for self-decorated copper selenide (Cu2-xSe) nanosheets is reported. Structural and morphological characterizations clearly revealed the formation of single cubic phase Cu2-xSe nanosheets in nearly stoichiometric ratio. The tentative mechanism for fabrication of self-decorated Cu2-xSe nanosheets was proposed. Furthermore, nanostructured bulk Cu2-xSe by hot pressing was explored for thermoelectric performance. High electrical conductivity (1.1 × 105 S/m), moderate Seebeck coefficient (87 μV/K) and low thermal conductivity (1.11 W/mK) at 753 K were obtained. The figure of merit (ZT) ~ 0.56 and power factor (PF) ~ 860 μW/mK2 at 753 K showed better performance than some reported Cu2-xSe nanostructured or bulk counterparts under same temperature. Also, theoretically device ZT ~0.16 and efficiency up to 3% could be achieved. The results indicate that this green and novel synthesis process is an alternative to other reported time or energy consuming processes.  相似文献   

15.
Cu6PS5I1? ? ? x Cl x mixed crystals were grown using chemical vapour transport. Isoabsorption studies of optical absorption edge and optical polarization measurements were performed in the temperature range 77–320?K. The influence of anionic I?→?Cl substitution on the phase transitions in Cu6PS5I1? ? ? x Cl x mixed crystals is studied. Compositional dependence of the phase-transition temperatures is obtained and the x,T-diagram for Cu6PS5I1? ? ? x Cl x mixed crystals is constructed.  相似文献   

16.
对硫掺杂C60薄膜样品在433K进行真空退火,并测量了其电导率随温度的变化关系.发现硫掺杂后C60薄膜的电导激活能减小,电导率显著增大.电导率随温度的变化曲线在368K到388K的范围内,存在一个电导率与温度的关系不严格遵循指数规律的过渡区,在过渡区的两侧硫掺杂的C60薄膜则表现出明显的半导体特性,这是由于在不同温度范围内样品中硫分子的结构相变所引起的 关键词:  相似文献   

17.
Cu7PSe6 is a mixed conductor exhibiting structural phase transitions above and below room temperature that are accompanied by step-like changes in electrical conductivity. The substitution of S2− for Se2− in Cu7PSe6 significantly enhances electrical conductivity at room temperature compared to that observed for the pure compound. In the case of Cu7P(Se0.80S0.20)6, a nearly temperature-independent electrical conductivity exceeds 1 S/cm with no evidence of any phase transitions throughout the temperature interval 200-400 K. However, the ionic contribution accounts for just 2% of the total electrical conductivity in this solid solution at room temperature.  相似文献   

18.
肖星星  谢文杰  唐新峰  张清杰 《中国物理 B》2011,20(8):87201-087201
With good electrical properties and an inherently complex crystal structure, Cu2-xSe is a potential “phonon glass electron crystal” thermoelectric material that has previously not attracted much interest. In this study, Cu2-xSe (0 ≤ x ≤ 0.25) compounds were synthesized by a melting-quenching method, and then sintered by spark plasma sintering to obtain bulk material. The effect of Cu content on the phase transition and thermoelectric properties of Cu2-xSe were investigated in the temperature range of 300 K—750 K. The results of X-ray diffraction at room temperature show that Cu2-xSe compounds possess a cubic structure with a space group of Fm3m (#225) when 0.15 < x le 0.25, whereas they adopt a composite of monoclinic and cubic phases when 0 ≤ x ≤ 0.15. The thermoelectric property measurements show that with increasing Cu content, the electrical conductivity decreases, the Seebeck coefficient increases and the thermal conductivity decreases. Due to the relatively good power factor and low thermal conductivity, the nearly stoichiometric Cu2Se compound achieves the highest ZT of 0.38 at 750 K. It is expected that the thermoelectric performance can be further optimized by doping appropriate elements and/or via a nanostructuring approach.  相似文献   

19.
Investigation results of dielectric and ultrasonic properties of layered CuInP2S6 crystals are presented. At low frequencies, dielectric spectra are highly influenced by the high ionic conductivity with the activation energy of 7357.4?K (0.635?eV). The high-frequency part of the spectra is determined by relaxational soft mode. The critical slowing down and Debye-type dispersion show the order–disorder type of the phase transition. The temperature dependence of the relaxational soft mode and dielectric contribution show a quasi-one-dimensional behaviour. Ultrasonic velocity exhibits critical slowing down which is accompanied by attenuation peaks in the phase transition region. Layered CuInP2S6 crystals have extremely large elastic nonlinearity in the direction perpendicular to layers. The nonlinear elastic parameters substantially increases at the PT temperature.  相似文献   

20.
The variations of the superconducting transition temperature (Tc) and of the lattice transformation temperature (TL) with composition are reported for the Chevrel-phase system CuxMo3S4 (1 ≤ × ≤ 2). A complex low temperature phase diagram was found, containing at least three distinct low temperature phases, each exhibiting its own characteristic Tc (11 K, 6.5 K, 4.5 K), TL (280 K - 125 K), and electronic transport behavior. Pressure-induced transformations between these three phases were observed at pressures below 25 kbar. Temperature-induced lattice distortion for compositions near Cu2Mo3S4 was found to increase the Tc above that (< 1.1 K) of the high temperature, higher symmetry rhombohedral phase. This is apparently the first time the latter behavior has been observed: in all previous studies of other materials, the opposite behavior was reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号