首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The photophysics of the 5-hydroxyflavone (5HF) molecule has been revised. Conversely to what has been hitherto reported, the proton-transfer fluorescence of 5HF has been recorded under xenon lamp excitation in cyclohexane, hexane, ethanol, ethyl ether, 2-methyl-2-propanol, and dimethylsulfoxide at room temperature. The 5HF fluorescence spectra only exhibit one emission band centered at ca. 700 nm. A small photoreaction quantum yield of 10(-5)-10(-6) denotes the great photostability exemplified by 5HF in hydrocarbon solvent, ethanol, and dimethylsulfoxide. This great photostability is predominantly explained owing to an internal conversion process from the first excited singlet state 1(pi,pi*)1 (S1), which has a repulsive (proton-transfer) potential energy curve with respect to the stretching of the OH bond and only one energy minimum for the proton-transfer tautomer. The S1'-S0' energy gap proves to be small because of important modifications found in the molecular geometry of 5HF upon photoexcitation. A computational strategy, based upon theoretical calculations at the B3LYP density functional theory (DFT) and time-dependent DFT levels, supports the experimental spectroscopic evidence. Also an abnormal singlet-triplet splitting for a pi,pi* configuration has been found in 5HF.  相似文献   

2.
3.

Abstract  

Five novel lanthanide (Eu3+, Tb3+, Sm3+, Dy3+, and Gd3+) complexes with 5-nitro-1,10-phenanthroline (phenNO2) have been synthesized and characterized by elemental analysis, IR, UV, and luminescence spectra. The triplet state energy of phenNO2 was determined to be 20,048 cm−1 via the phosphorescence spectra of phenNO2 and its gadolinium complex. The photophysical properties of these complexes indicated that the triplet state energy of the ligand is suitable for the sensitization of the luminescence of Eu3+ and Sm3+, especially the former.  相似文献   

4.
The molar absorption coefficient of ricin in phosphate-buffered saline (PBS) at 279 nm was measured as (93,900+/-3300) L mol(-1) cm(-1). The concentration of ricin was determined using amino acid analysis. The absorption spectrum of ricin was interpreted in terms of 69% contribution from absorption by tryptophan residues and 31% contribution from absorption by tyrosine residues. The total dipole strength of the ricin band at 280 nm was determined to be (147+/-8) D2 and was consistent with the combined dipole strengths of 10 tryptophan ([11.7+/-1.0] D2) and 23 tyrosine ([1.4+/-0.2] D2) residues. The structure of ricin was used to determine the coupling of the tryptophan residues in ricin. The maximum interaction energy was found to be 424 cm(-1)/epsilon while the average interaction between any two pairs of tryptophan residues was approximately 18 cm(-1)/epsilon. In this study, epsilon is the dielectric constant inside the protein. The fluorescence from ricin, excited at 280 nm, was dominated by fluorescence from tryptophan residues suggesting the presence of energy transfer from tyrosine to tryptophan residues. The absorbance and fluorescence of ricin increased slightly when ricin was denatured in a high concentration of guanidine. Irreversible thermal unfolding of ricin occurred between 65 degrees C and 70 degrees C. (D=3.3364*10(-30) Cm, not SI unit, convenient unit for the magnitude of the electric dipole moment of molecules.).  相似文献   

5.
The photophysical properties of the Zn salt of octaethylcorrphycene (compound 1) and the doubly protonated octaethylcorrphycene (compound 2) were determined in benzene solutions. Fluorescence spectra and fluorescence quantum yields of phiF (1) = 0.03+/-0.02 and PF (2) = 0.06+/-0.02 were measured. The triplet-triplet absorption spectra were obtained by means of flash-photolysis experiments. The triplet quantum yield values phiT (1) = 0.79+/-0.08 and phiT (2) = 0.82+/-0.08 were obtained by using laser-induced optoacoustic spectroscopy. The quantum yield of singlet molecular oxygen generation in air-saturated solutions, phidelta (1) = 0.55+/-0.07 and phidelta (2) = 0.38+/-0.05, were also measured using time resolved NIR luminescence.  相似文献   

6.
Steady state fluorescence emission and transient absorption spectra of 9-fluorenone (9FL) were measured in the presence of 5-hydroxyindole (5HI) in highly polar acetonitrile (ACN) environment at ambient temperature. Cyclic voltammetry measurements demonstrate that ground state 5HI as a donor could take part in highly exothermic electron transfer (ET) reactions with excited 9FL, which should serve as electron acceptor. From the transient absorption measurements it is inferred that in geminate ion-pair (GIP) (or contact ion pair), formed initially due to photoinduced ET, the decay of this contact ion-pair occurs not only through ion recombination (back electron transfer to ground state of reactants), but through the other processes also such as proton-transfer (hydrogen abstraction) from radical cation to anion and separation of ion-pair producing the free ions. From the computed reorganisation energy parameter (λ) and experimentally observed - ET 0 values it is hinted that there is a possibility that highly exothermic forward electron transfer reactions in the singlet stateS 1 occur, within present reacting systems, in Marcus inverted region. Back transfer seems to follow the same path. Investigations with similar other reacting systems are underway.  相似文献   

7.
2-Phenyl-5-(p-vinyl)phenyloxazole (POS) has been synthesized. Copolymers of POS with styrene and the homopolymer poly–POS have been prepared. The polymers have been characterized through measurements of fluorescence decay times (using synchrotron radiation for excitation) and examination of excimer formation in the homopolymer. Fluorescence decay times of 0.6(±0.4) nsec and 9 (±0.2) nsec have been recorded at 298°K in toluene solution for monomer and excimer, respectively. Poly-POS exhibits excimer formation characterized by an activation energy of 5.9(±0.5) kJ/mole and a binding energy of 17.0(±1.0) kJ/mole.  相似文献   

8.
Photophysical properties of 3-azafluorenone have been studied in acetonitrile at room temperature (296 K). Its fluorescence quantum yield and fluorescence lifetime were found to be lower than those of fluorenone due to the higher rate of nonradiative processes.  相似文献   

9.
In this study, we evaluated the photophysical properties of 5,10,15,20-tetrakis[4-(1,4,7,10,13-pentaoxacyclopentadecane-2-aminomethyl)2,3,5,6-(tetrafluoro)-phenyl]-porphyrin (H2C4P) and Zn(II)5,10,15,20-tetrakis[4-(1,4,7,10,13-pentaoxacyclopenta-decane-2-aminomethyl)2,3,5,6-(tetrafluoro)-phenyl]-porphyrinate (ZnC4P). We observed that these porphyrins have unique properties when compared with classical porphyrins. The porphyrins H2C4P and ZnC4P showed efficient transfer energy S1 to T1 by intersystem crossing with high and reasonable yields of triplet excited state and singlet oxygen production. These amphiphilic structures of these porphyrins could improve its localization in the tumor cells due to the presence of the crown ether in its framework. We also believed that the crown ether could modulate the change in ion homeostase (Ca(+2), K+, Na+) as already described by some new phthalocyanine dye. This fact makes us believe that it could be reasonably used as a photosensitizer for PDT purposes.  相似文献   

10.
Photophysical properties of porphyrin tapes   总被引:1,自引:0,他引:1  
The novel fused Zn(II)porphyrin arrays (Tn, porphyrin tapes) in which the porphyrin macrocycles are triply linked at meso-meso, beta-beta, beta-beta positions have been investigated by steady-state and time-resolved spectroscopic measurements along with theoretical MO calculations. The absorption spectra of the porphyrin tapes show a systematic downshift to the IR region as the number of porphyrin pigments increases in the arrays. The fused porphyrin arrays exhibit a rapid formation of the lowest excited states (for T2, approximately 500 fs) via fast internal conversion processes upon photoexcitation at 400 nm (Soret bands), which is much faster than the internal conversion process of approximately 1.2 ps observed for a monomeric Zn(II)porphyrin. The relaxation dynamics of the lowest excited states of the porphyrin tapes were accelerated from approximately 4.5 ps for the T2 dimer to approximately 0.3 ps for the T6 hexamer as the number of porphyrin units increases, being explained well by the energy gap law. The overall photophysical properties of the porphyrin tapes were observed to be in a sharp contrast to those of the orthogonal porphyrin arrays. The PPP-SCI calculated charge-transfer probability indicates that the lowest excited state of the porphyrin tapes (Tn) resembles a Wannier-type exciton closely, whereas the lowest excited state of the directly linked porphyrin arrays can be considered as a Frenkel-type exciton. Conclusively, these unique photophysical properties of the porphyrin tapes have aroused much interest in the fundamental photophysics of large flat organic molecules as well as in the possible applications as electric wires, IR sensors, and nonlinear optical materials.  相似文献   

11.
A number of photophysical properties of 5H-dibenzo(a,d)cyclohepten-5-one have been measured for the first time including the prompt and P-type delayed fluorescence, and triplet-triplet absorption. Decay parameters, for the triplet-state of this molecule, have also been measured in different quenching conditions. The results are discussed and compared for those of similar molecules.  相似文献   

12.
The results of a comprehensive investigation of the photophysical properties of the sunscreen analogue, N-acetyl menthyl anthranilate (NAMA), in various solvent systems are reported. Luminescence studies reveal that this compound is fluorescent (Phi(f)=0.16+/-0.01) in toluene and has a solvent dependent emission maximum in the range 363-370 nm. Phosphorescence has also been detected in low temperature glasses with an emission maximum at 420 nm in EPA, and a lifetime of 1.3 s; the triplet energy was found to be 311+/-3 kJ mol(-1). Kinetic UV-visible absorption measurements revealed a transient species with absorption maxima at 450 nm and solvent dependent lifetimes of 120-240 micros which are attributed to the triplet state. The triplet state is efficiently quenched by oxygen, leading to the formation of singlet oxygen in all of the solvent systems studied. The singlet oxygen quantum yields (Phi(Delta)), determined by time-resolved near-infrared luminescence measurements, were in the range 0.19-0.21.  相似文献   

13.
The photophysics of lumichrome, 1-methyllumichrome, and lumiflavin in water solutions have been investigated. Fluorescence lifetimes of 2.7 and 2.2 ns were observed for lumichrome and 1-methyllumichrome, respectively, the corresponding triplet state lifetimes of 17 and 18 μs have been obtained from the transient absorption spectra. Evidence for long lived species with absorption maxima near 450 nm and lifetimes of ca. 400 μs has been found in the transient absorption spectra of both lumichromes. Quantum yields for the sensitised production of singlet oxygen, φΔ, are 0.36 and 0.41 for lumichrome and 1-methyllumichrome, respectively, in D2O.  相似文献   

14.
Research on Chemical Intermediates - New double-armed crown ether ligands linked to pyridine derivatives have been synthesized and characterized. These macrocyclic ligands (1–5) have been...  相似文献   

15.
Photophysical properties of three tetracene (TET) derivatives were investigated in solution. The quantum yield of intersystem crossing (QISC) and the fluorescence lifetime (τF) or 5-monophenyltetracene (MPT) and 5-naphthyltetracene (NAT) are similar to the parent molecule: QISC = 0.6–0.7, τF = 4.8–5.2 ns. Distinctly different properties were found for 5,12-diphenyltetracene (DPT): QISC = 0.17, τF = 15.2 ns. Of the molecules investigated only in DPT is (S1-T2) ISC a thermally activated process. The frequency factor A and the experimental activation energy Ea were determined according to an Arrhenius-type relationship. With Ea the energy of the T2 state can be estimated. The T1 state energy of DPT was measured with the method of reversible triplet energy transfer. These results permit to explain photophysical properties on the basis of a schematic energy level diagram and emphasize the role of higher triplet states in molecular deactivation processes. Previously we found thermally activated ISC in rubrene (RUB). The frequency factor of DPT exceeds that of RUB by more than one order of magnitude. This difference is discussed with respect to the effect of steric hindrances in RUB.  相似文献   

16.
A heavy atom, bromine, was directly substituted into the porphycene macrocycle to promote intersystem crossing by way of spin-orbit coupling. The singlet oxygen production ability of the porphycene is dramatically enhanced, and the highest value of 0.95 for the quantum yield of singlet oxygen generation (PhiDelta) was obtained for the dibrominated porphycene by visible light excitation.  相似文献   

17.
Photophysical and photosensitizing properties of selected cyanines   总被引:1,自引:0,他引:1  
The present work has been carried out to obtain detailed information about the photophysical and photobiological properties of selected cyanines, in view of their possible use as photosensitizing agents. All the cyanines studied by us except CY-IV (3,3'-diethyl-4,4'-oxacarbocyanine), expressed an accelerated photobleaching in aqueous medium, a poor generation of singlet oxygen, and a relative weak photosensitizing activity towards albumin. On the cellular level, all cyanines exhibited a significant phototoxicity towards Balb/c 3T3 cells, upon irradiation with a total fluence of 30 J/cm(2). CY-III (3,3'-diethylcarbothiocayanine iodide) and CY-II (1,1'-diethyl-4,4'-carbocyanine iodide) appear to be promising photosensitizers, in spite of previous reports on the inefficiency of the former cyanine, and the rapid photobleaching of the latter compound.  相似文献   

18.
The photophysical properties of seven new 8-(p-substituted)phenyl analogues of 4,4-difluoro-3,5-dimethyl-8-(aryl)-4-bora-3a,4a-diaza-s-indacene (derivatives of the well-known fluorophore BODIPY) in several solvents have been studied by means of absorption and steady-state and time-resolved fluorimetry. For each compound, the fluorescence quantum yield and lifetime are lower in solvents with higher polarity owing to an increase in the rate of nonradiative deactivation. Increasing the electron withdrawing strength of the p-substituent on the phenyl group in position 8 also leads to lower fluorescence quantum yields and lifetimes. When the p-substituent on the phenyl group in position 8 is a tertiary amine [8-(4-piperidinophenyl), 8-(4-N,N-dimethylaminophenyl), and 8-(4-morpholinophenyl)], the low quantum yields of these compounds in more polar solvents can be rationalized by the inversion of the energy levels of an apolar, highly fluorescent and a polar, nonfluorescent excited state, where charge transfer from the tertiary amine to the BODIPY unit occurs. These amine analogues can be protonated at low pH in aqueous solution. Fluorescence titrations yielded pK(a) values of their conjugate ammonium salts which are in agreement with the electron donating tendency of the amine group: piperidino (4.15) > dimethylamino (2.37) > morpholino (1.47), with the pK(a) values in parentheses. The rate constant of radiative deactivation (k(f)) is the same for all compounds in all solvents studied (k(f) = 1.4 x 10(8) s(-1)).  相似文献   

19.
Anthanthrene (1) derivatives substituted at the 4,10 and 6,12 positions (2-6) were synthesized as promising candidates for organic light emitting diodes (OLEDs). The emission of these compounds can be manipulated in the blue region (lambda(max) = 437-467 nm) through structural modifications. Photophysical and electrochemical properties (phi(F) = 0.20-0.47; tau(F) = 2.97-6.06 ns; HOMO-LUMO energy gap = 2.25-2.56 eV) as well as geometry optimized structures of 1-6 are reported.  相似文献   

20.
We describe the synthesis and photophysical properties of a series of neutral and cationic 3,4-tetrapyridinoporphyrazines, potential lead photosensitizers for photodynamic inactivation of bacteria. Tetracationic TPyPzs exist essentially as monomers in aqueous systems, but the presence of trialkylated compounds due to incomplete quaternization of the outer nitrogen atoms induces severe aggregation. The absorption, fluorescence, triplet, and singlet oxygen quantum yields for both the neutral and cationic compounds are comparable to those of the related phthalocyanines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号