首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

2.
Two pure hydrated lead borates, Pb(BO2)2·H2O and PbB4O7·4H2O, have been characterized by XRD, FT-IR, DTA-TG techniques and chemical analysis. The molar enthalpies of solution of Pb(BO2)2·H2O and PbB4O7·4H2O in 1 mol dm?3 HNO3(aq) were measured to be (?35.00 ± 0.18) kJ mol?1 and (35.37 ± 0.14) kJ mol?1, respectively. The molar enthalpy of solution of H3BO3(s) in 1 mol dm?3 HNO3(aq) was measured to be (21.19 ± 0.18) kJ mol?1. The molar enthalpy of solution of PbO(s) in (HNO3 + H3BO3)(aq) was measured to be ?(61.84 ± 0.10) kJ mol?1. From these data and with incorporation of the enthalpies of formation of PbO(s), H3BO3(s) and H2O(l), the standard molar enthalpies of formation of ?(1820.5 ± 1.8) kJ mol?1 for Pb(BO2)2·H2O and ?(4038.1 ± 3.4) kJ mol?1 for PbB4O7·4H2O were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

3.
The enthalpies of solution of β-CsB5O8 · 4H2O in HCl (aq), and of CsCl in (HCl + H3BO3) (aq) were determined. With the incorporation of the previously determined enthalpy of solution of H3BO3 in HCl (aq) and the standard molar enthalpies of formation of CsCl (s), H3BO3 (s), HCl (aq), and H2O (l), the standard molar enthalpy of formation of β-CsB5O8 · 4H2O of −(4846.29 ± 0.58) kJ · mol−1 was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

4.
The pure hydrated metalloborophosphate sample, Na2[CuB3P2O11(OH)]·0.67H2O, has been synthesized and characterized by XRD, FT-IR, DTA-TG techniques, and chemical analysis. The molar enthalpies of solution of Na2[CuB3P2O11(OH)]·0.67H2O(s) in 1 mol · dm?3 HCl (aq), of Cu(OH)2 (s) in (HCl + H3BO3) (aq), and of NaH2PO4·2H2O (s) in (HCl + H3BO3 + Cu(OH)2) (aq) were measured, respectively. With the incorporation of the previously determined enthalpy of solution of H3BO3 (s) in 1 mol · dm?3 HCl (aq), together with the use of the standard molar enthalpies of formation for NaH2PO4·2H2O (s), Cu(OH)2 (s), H3BO3 (s), and H2O (l), the standard molar enthalpy of formation of ?(4988.4 ± 2.5) kJ · mol?1 for Na2[CuB3P2O11(OH)]·0.67H2O at T = 298.15 K was obtained on the basis of the appropriate thermochemical cycle.  相似文献   

5.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

6.
The important zinc borate of 2ZnO · 3B2O3 · 3H2O has been synthesized and characterized by means of chemical analysis, XRD, FT-IR, and DTA–TG techniques. The molar enthalpies of solution of H3BO3(s) in HCl · 54.561H2O, of ZnO(s) in the mixture of HCl · 54.561H2O and calculated amount of H3BO3, and of 2ZnO · 3B2O3 · 3H2O(s) in HCl · 54.604H2O were measured, respectively. With the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of ?(5561.7 ± 4.9) kJ · mol?1 for 2ZnO · 3B2O3 · 3H2O(s) was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

7.
The (solid + liquid) phase equilibria of the ternary systems (CsBr + LnBr3 + H2O) (Ln = Pr, Nd, Sm) at T = 298.2 K were studied by the isothermal solubility method. The solid phases formed in the systems were determined by the Schreinemakers wet residues technique, and the corresponding phase diagrams were constructed based on the measured data. Each of the phase diagrams, with two invariant points, three univariant curves, and three crystallization regions corresponding to CsBr, Cs2LnBr5·10H2O and LnBr3·nH2O (n = 6, 7), respectively, belongs to the same category. The new solid phase compounds Cs2LnBr5·10H2O are incongruently soluble in water, and they were characterized by chemical analysis, XRD and TG-DTG techniques. The standard molar enthalpies of solution of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O in water were measured to be (52.49 ± 0.48) kJ · mol−1, (49.64 ± 0.49) kJ · mol−1 and (50.17 ± 0.48) kJ · mol−1 by microcalorimetry under the condition of infinite dilution, respectively, and their standard molar enthalpies of formation were determined as being −(4739.7 ± 1.4) kJ · mol−1, −(4728.4 ± 1.4) kJ · mol−1 and −(4724.4 ± 1.4) kJ · mol−1, respectively. The fluorescence excitation and emission spectra of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O were measured. The results show that the upconversion spectra of the three new solid phase compounds all exhibit a peak at 524 nm when excited at 785 nm.  相似文献   

8.
New compounds of aspartic acid Cs(ASP) · nH2O (n = 0, 1) have been synthesized and characterized by XRD, IR and Raman spectroscopy as well as TG. The structural formula of this new compound was Cs(ASP) · nH2O (n = 0, 1). The enthalpy of solution of Cs(ASP) · nH2O (n = 0, 1) in water were determined. With the incorporation of the standard molar enthalpies of formation of CsOH(aq) and ASP(s), the standard molar enthalpy of formation of −(1202.9 ± 0.2) kJ · mol−1 of Cs(ASP) and −(1490.7 ± 0.2) kJ · mol−1 of Cs(ASP) · H2O were obtained.  相似文献   

9.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

10.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

11.
Excess molar enthalpies HmEand excess molar volumesVmE of (1,3-dimethyl-2-imidazolidinone  +  benzene, or methylbenzene, or 1,2-dimethylbenzene, or 1,3-dimethylbenzene, or 1,4-dimethylbenzene, or 1,3,5-trimethylbenzene, or ethylbenzene) over the whole range of compositions have been measured at T =  298.15 K. The excess molar enthalpy values were positive for five of the seven systems studied and the excess molar volume values were negative for six of the seven systems studied. The excess enthalpy ranged from a maximum of 435 J · mol  1for (1,3-dimethyl-2-imidazoline  +  1,3,5-trimethylbenzene) to a minimum of   308 J · mol  1for (1,3-dimethyl-2-imidazoline  +  benzene). The excess molar volume values ranged from a maximum of 0.95cm3mol  1 for (1,3-dimethyl-2-imidazoline  +  ethylbenzene) and a minimum of   1.41 cm3mol  1for (1,3-dimethyl-2-imidazoline  +  methylbenzene). The Redlich–Kister polynomial was used to correlate both the excess molar enthalpy and the excess molar volume data and the NRTL and UNIQUAC models were used to correlate the enthalpy of mixing data. The NRTL equation was found to be more suitable than the UNIQUAC equation for these systems. The results are discussed in terms of the polarizability of the aromatic compound and the effect of methyl substituents on the benzene ring.  相似文献   

12.
Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, ΔsolHm(T = 295.73 K; m = 0.0622 mol · kg−1) = (17.83 ± 0.50) kJ · mol−1; cesium bromide, ΔsolHm(T = 293.99 K; m = 0.0238 mol · kg−1) = (26.91 ± 0.59) kJ · mol−1; cesium nitrate, ΔsolHm(T = 294.68 K; m = 0.0258 mol · kg−1) = (37.1 ± 2.3) kJ · mol−1; cesium sulfate, ΔsolHm(T = 296.43 K; m = 0.0284 mol · kg−1) = (16.94 ± 0.43) kJ · mol−1; cesium formate, ΔsolHm(T = 295.64 K; m = 0.0283 mol · kg−1) = (11.10 ± 0.26) kJ · mol−1 and ΔsolHm(T = 292.64 K; m = 0.0577 mol · kg−1) = (11.56 ± 0.56) kJ · mol−1; and cesium oxalate, ΔsolHm(T = 291.34 K; m = 0.0143 mol · kg−1) = (22.07 ± 0.16) kJ · mol−1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs)2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations.  相似文献   

13.
An energetic coordination compound [Co2(C2H5N5)2(C7H3NO4)2(H2O)2]·2H2O (Hdatrz(C2H5N5) = 3,5-diamino-1,2,4-triazole, H2pda(C7H5NO4) = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by elemental analysis, chemical analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analysis confirmed that the compound possessed a di-nuclear unit and featured a 3D super-molecular structure. Furthermore, a reasonable thermochemical cycle was designed based on the preparation reaction of the compound and the standard molar enthalpy of dissolution of reactants and products was measured by the RD496-2000 calorimeter. Finally, the standard molar enthalpy of formation of the compound was determined to be −(2475.0 ± 3.1) kJ · mol−1 in accordance with Hess’s law. In addition, the specific heat capacity of the compound at T = 298.15 K was determined to be (1.13 ± 0.02) J · K−1 · g−1 by RD496-2000 calorimeter.  相似文献   

14.
The enthalpies of combustion and of sublimation, respectively, of the three isomeric nitrobenzonitriles have been measured: o-, {(−3456.3±2.9), (88.1±1.4)} kJ·mol−1; m-, {(−3442.8±3.3), (92.8±0.3)} kJ·mol−1; p-, {(−3448.2±3.6), (91.1±1.3)} kJ·mol−1. In turn, from these values, the standard molar enthalpies of formation for the condensed and gaseous state, respectively, have been derived: o-, {(130.1±3.1), (218.2±3.4)} kJ·mol−1; m-, {(116.5±3.5), (209.3±3.5)} kJ·mol−1; p-, {(122.0±3.8), (213.1±4.0)} kJ·mol−1. Destabilization energies associated with the presence of the two electron-withdrawing groups have been determined, for o-, m-, and p-nitrobenzonitrile, {(17.6±4.1), (8.7±4.2), and (12.5±4.6)} kJ·mol−1, respectively, and are consistent with those obtained for the corresponding sets of isomeric methyl benzenedicarboxylates, dicyanobenzenes, dinitrobenzenes, and (neutral and ionized) nitrobenzoic acids.  相似文献   

15.
Solubilities of l -glutamic acid, 3-nitrobenzoic acid, p -toluic acid, calcium-l -lactate, calcium gluconate, magnesium- dl -aspartate, and magnesium- l -lactate in water were determined in the temperature range 278 K to 343 K. The apparent molar enthalpies of solution at T =  298.15 K as derived from these solubilities areΔsolHm (l -glutamic acid,msat =  0.0565 mol · kg  1)  =  30.2 kJ · mol  1,ΔsolHm (3-nitrobenzoic acid, m =  0.0188 mol · kg  1)  =  28.1 kJ · mol  1, ΔsolHm( p - toluic acid, m =  0.00267 mol · kg  1)  =  23.9 kJ · mol  1,ΔsolHm (calcium- l -lactate tetrahydrate,m =  0.2902 mol · kg  1)  =  25.8 kJ · mol  1,ΔsolHm (calcium gluconate, m =  0.0806 mol · kg  1)  =  22.1 kJ · mol  1, ΔsolHm(magnesium-dl -aspartate tetrahydrate, m =  0.1469 mol · kg  1)  =  11.5 kJ · mol  1, andΔsolHm (magnesium- l -lactate trihydrate,m =  0.3462 mol · kg  1)  =  3.81 kJ · mol  1.  相似文献   

16.
Excess molar volumes VmE of binary mixtures of 2,2,2-trifluoroethanol with water, or acetone, or methanol, or ethanol, or 1-alcholos, or 1,4-difluorobenzene, or 4-fluorotoluene or α,α,α-trifluorotoluene were measured in a vibrating tube densimeter at temperature 298.15 K and pressure of 101 kPa. The VmE extrema are: 1.540 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1-heptanol); 1.452 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1-hexanol); 1.238 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1-butanol); 0.821 cm3 · mol−1 for (2,2,2-trifluoroethanol + 4-fluorotoluene); 0.817 cm3 · mol−1 for (2,2,2-trifluoroethanol + ethanol); 0.647 cm3 · mol−1 for (2,2,2-trifluoroethanol + methanol); 0.618 cm3 · mol−1 for (2,2,2-trifluoroethanol + acetone); 0.605 cm3 · mol−1 for (2,2,2-trifluoroethanol + α,α,α-trifluorotoluene); 0.485 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1,4-difluorobenzene); and −0.656 cm3 · mol−1 for (2,2,2-trifluoroethanol + water). The limiting excess partial molar volumes are estimated.  相似文献   

17.
18.
A novel complex, bis(trans-bis(N,N-dimethyl-(1-(R)-phenyl-2-(S)-methyl-2-aminoethoxy-N,O))-copper(II)) heptahydrate (abbreviated as Cu2(C11H16NO)4·7H2O(cr)), was synthesized by the method of liquid phase reflux. The composition and structure of the complex were characterized by chemical analysis, elemental analysis, FTIR, and X-ray crystallography. A reasonable thermochemical cycle was designed based on the preparation reaction of the coordination compound, and standard molar enthalpies of dissolution of reactants and products were measured by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the complex Cu2(C11H16NO)4·7H2O(cr) was determined to be ?(4525.22 ± 13.71) kJ · mol?1 in accordance with Hess’s law.  相似文献   

19.
This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H2O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm3 · mol−1 to 1.2 cm3 · mol−1). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation.  相似文献   

20.
The molar heat capacity of Zn2GeO4, a material which exhibits negative thermal expansion below ambient temperatures, has been measured in the temperature range 0.5⩽(T/K)⩽400. At T=298.15 K, the standard molar heat capacity is (131.86 ± 0.26) J · K−1 · mol−1. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropy at T=298.15 K is (145.12 ± 0.29) J · K−1 · mol−1. The existence of low-energy modes is supported by the excess heat capacity in Zn2GeO4 compared to the sums of the constituent binary oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号