首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Experimental (liquid + liquid) equilibrium (LLE) data for a ternary system containing (ethylene glycol + benzene + cyclohexane) were determined at temperatures (298.15, 308.15, and 318.15) K and at atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvent for extraction of benzene from cyclohexane. The effect of temperature in extraction of benzene from the (benzene + cyclohexane) mixture indicated that at lower temperatures the selectivity (S) is higher, but the distribution coefficient (K) is rather lower. The LLE results for the system studied were used to obtain binary interaction parameters in the UNIQUAC and NRTL models by minimizing the root mean square deviations (RMSD) between the experimental results and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The NRTL model fits the (liquid + liquid) equilibrium data of the mixture studied slightly better. The root mean square deviations (RMSDs) obtained comparing calculated and experimental two-phase compositions are 0.92% for the NRTL model and 0.95% for the UNIQUAC model.  相似文献   

4.
Excess molar volumes VmEof {di- n -butyl ether (DBE)  +  a monofunctional organic compound} have been determined atT =  298.15 K over the whole composition range by means of a vibrating-tube densimeter. TheVmE values were either positive (propylamine, or butylamine, or acetone, or tetrahydrofuran  +  DBE) or negative (methanol, or butanol, or diethyl ether, or cyclopentanone, or acetonitrile  +  DBE). Markedly asymmetric VmEcurves were displayed by (DBE  +  methanol) and (DBE  +  acetonitrile). Partial molar volumes __ Vmoat infinite dilution in DBE, both from this work and the literature, were analysed in terms of an additivity scheme, and the group contributions thus obtained were discussed and compared with analogous results in water. DBE revealed a greater capability of distinguishing between polar and non-polar solutes, as well as in discriminating differently shaped molecules (unbranched, branched, cyclic). The limiting slopes of apparent excess molar volumes are evaluated and briefly discussed in terms of solute–solute and solute–solvent interactions.  相似文献   

5.
The excess molar enthalpies HmE, for the mixtures (N-methyl-2-pyrrolidinone + ethanol, or pentan-1-ol, or hexan-1-ol, or heptan-1-ol, or octan-1-ol, or nonal-1-ol, or decan-1-ol, or undecan-1-ol) at T=298.15 K and atmospheric pressure have been obtained using flow calorimetry. Excess molar volumes at T=298.15 K and atmospheric pressure have also been determined for (N-methyl-2-pyrrolidinone + nonal-1-ol, or decan-1-ol, or undecan-1-ol) from density measurements using a vibrating tube densimeter. The experimental results have been correlated and compared with the results from the Flory–Benson–Treszczanowicz (FBT) theory and from the Extended Real Associated Solution (ERAS) model. The ERAS model accounts free volume effects according to the Flory–Patterson model and additionally association effects between the molecules involved. For the mixtures studied here the association effects arise from the self association of an alkan-1-ol molecules and also the cross-association of the proton of the alkan-1-ol with carbonyl oxygen of N-methyl-2-pyrrolidinone (NMP) molecule. The parameters adjusted to the mixtures properties are two cross-association parameters and the interaction parameter responsible for the exchange energy of the van der Waals interactions. Self-association parameters of the alcohols and NMP are taken from the literature.  相似文献   

6.
The aim of this paper is to report experimental densities, excess molar enthalpies and refractive indexes of the ternary system (propyl propanoate + hexane + toluene) and of the corresponding binary mixtures (propyl propanoate + toluene) and (hexane + toluene) at the temperature 298.15 K and atmospheric pressure, over the whole composition range. Also, the excess molar volumes and the changes in the refractive index on mixing have been calculated from the measured data for all mixtures.  相似文献   

7.
This paper describes a chemical model that calculates (solid + liquid) equilibria in the {m1FeCl2 + m2FeCl3}(aq), {m1FeSO4 + m2Fe2(SO4)3}(aq), {m1NaCl + m2FeCl3}(aq), {m1Na2SO4 + m2FeSO4}(aq), {m1NaCl + m2FeCl2}(aq), {m1KCl + m2FeCl3}(aq), {m1K2SO4 + m2Fe2(SO4)3}(aq), {m1KCl + m2FeCl2}(aq), {m1K2SO4 + m2FeSO4}(aq), and {m1MgCl2 + m2FeCl2}(aq) systems, where m denotes molality at T=298.15 K. The Pitzer ion-interaction model has been used for thermodynamic analysis of the experimental activity data in binary FeCl2(aq) and FeCl3(aq) solutions, and ternary solubility data, presented in the literature. The thermodynamic functions needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherms have been plotted. The mixed solution model parameters {θ(MN) and ψ(MNX)} have been chosen on the basis of the compositions of saturated ternary solutions and data on the pure water solubility of the K2SO4 · FeSO4 · 6H2O double salt. The standard chemical potentials of four ferrous {FeCl2 · 4H2O, Na2SO4 · FeSO4 · 4H2O, K2SO4 · FeSO4 · 6H2O, and MgCl2 · FeCl2 · 8H2O} and three ferric {FeCl3 · 6H2O, 2KCl · FeCl3 · H2O, and 2K2SO4 · Fe2(SO4)3 · 14H2O} solid phases have been determined. Comparison of solubility predictions with experimental data not used in model parameterization is given. The component activities of the saturated {m1MgSO4 + m2FeSO4}(aq) and in the mixed crystalline phase were determined and the change of the molar Gibbs free energy of mixing ΔmixGm(s) of crystals was determined as a function of the solid phase composition. It is established that at T=298.15 K the mixed (Mg,Fe)SO4 · 7H2O and (Fe,Mg)SO4 · 7H2O crystals show small positive deviations from the ideal mixed crystals. Limitations of the {Fe(II) + Fe(III)} model due to data insufficiencies are discussed.  相似文献   

8.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

9.
The measurement of excess enthalpies, HE, at T=298.15 K and densities at temperatures between 283.15 K and 313.15 K are reported for the (2-methoxyethanol + 1,4-dioxane) and (1,2-dimethoxyethane + benzene) systems. The values of HE and the excess volumes, VE, are positive, and the temperature dependence of VE is quite small for (2-methoxyethanol + 1,4-dioxane). The (1,2-dimethoxyethane + benzene) system shows a negative HE and sigmoid curves in VE, which change sign from positive to negative with an increase in 1,2-dimethoxyethane. The temperature dependence of VE for this system is negative.  相似文献   

10.
Activity coefficients of CaCl2 in disaccharide {(maltose, lactose) + water} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl2 ranged from about 0.01 mol · kg?1 to 0.20 mol · kg?1, the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye–Hückel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (gES) and salting constants (kS) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model.  相似文献   

11.
Experimental values of density, refractive index and speed of sound of (hexane  +  cyclohexane  +  1-butanol) were measured at T =  298.15 K and atmospheric pressure. From the experimental data, the corresponding derived properties (excess molar volumes, changes of refractive index on mixing and changes of isentropic compressibility) were computed. Such derived values were correlated using several polynomial equations. Several empirical methods were used in the calculation of the properties of ternary systems from binary data. The Nitta–Chao group contribution model was applied to predict excess molar volume for this mixture.  相似文献   

12.
13.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

14.
15.
Electrochemical cells with two ion-selective electrodes, a cation ion-selective electrode against an anion ion-selective electrode, were used to measure the activity coefficient of amino acids in aqueous electrolyte solutions. Activity coefficient data were measured for (H2O + NaBr + glycine) and (H2O + NaBr + l-valine) at T=298.15 K. The maximum concentrations of sodium bromide, glycine, and l-valine were (1.0, 2.4, and 0.4) mol · kg−1, respectively. The results show that the presence of an electrolyte and the nature of both the cation and the anion of the electrolyte have significant effects on the activity coefficients of amino acid in aqueous electrolyte solutions.  相似文献   

16.
(Liquid + liquid) equilibrium tie-lines were measured for one ternary system {x1H2O + x2(CH3)2CHOH + (1  x1  x2)CH3C(CH3)2OCH3} and one quaternary system {x1H2O + x2(CH3)2CHOH + x3CH3C(CH3)2OCH3 + (1  x1  x2  x3)(CH3)2CHOCH(CH3)2} at T = 298.15 K and P = 101.3 kPa. The experimental (liquid + liquid) equilibrium results were satisfactorily correlated by modified and extended UNIQUAC models both with ternary and quaternary parameters in addition to binary ones.  相似文献   

17.
(Liquid + liquid) equilibrium (LLE) data of the solubility curves and tie-line end compositions are presented for mixtures of {water (1) + tetrahydrofuran (2) + xylene or chlorobenzene or benzyl ether (3)} at T = 298.2 K and P = (101.3 ± 0.7) kPa. Among the studied C6 ring-containing aromatic solvents, xylene gives the largest distribution ratio and separation factors for extraction of tetrahydrofuran. A solvation energy relation (SERLAS) has been used to estimate the (liquid + liquid) equilibria of associated systems containing a nonprotic solvent. The tie-lines were also predicted using the UNIFAC-original model. The reliability of both models has been analyzed against the LLE data with respect to the distribution ratio and separation factor. SERLAS matches LLE data accurately, yielding a mean error of 9.9% for all the systems considered.  相似文献   

18.
Standard thermodynamic functions of transfer of naphthalene and 2-naphthoic acid from water to (water + ethanol) mixtures at T=298.15 K have been determined from solubility measurements at different temperatures. Standard free energies of transfer of both naphthalene and 2-naphthoic acid showed decreasing tendency with the increasing x(EtOH), and the standard entropy and enthalpy of transfer exhibited a change of double peaks with x(EtOH). The ΔtrG0 of 2-naphthoic acid decreased more rapidly than that of naphthalene when x(EtOH) < 0.746 and lower than that of naphthalene when x(EtOH) >0.746 at T=298.15 K. The double peaks in the curves of standard entropy and enthalpy of transfer illustrated that the microstructure of the series of mixed solvents of (water + ethanol) underwent a variable process from ordered to disordered and then from disordered to ordered. The results mean that there is a relatively ordered structure near x(EtOH)=0.13 in the (water + ethanol) solutions besides the existence of a clathrate structure in the water-rich region.  相似文献   

19.
In this work, trioctyl methyl ammonium chloride (Aliquat 336) was studied for its ability to extract propionic acid at various amine concentrations. The extraction of propionic acid with Aliquat 336 dissolved in five single solvents (cyclohexane, hexane, toluene, methyl isobutyl ketone, and ethyl acetate ) and binary solvents (hexane + MIBK, hexane + toluene, and MIBK + toluene) was investigated under various experimental conditions. The loading factors Z, extraction efficiency E and overall particular distribution coefficients were determined. All measurements were carried out at T = 298.15 K. The obtained results and the observed phenomena were discussed by taking into consideration the mechanism of extraction and the concentration of the interaction product in the aqueous phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号