首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of a cavity by inclusion-matrix interfacial separation is examined by analyzing the response of a plane rigid inclusion embedded in an unbounded incompressible matrix subject to remote equibiaxial dead load traction. A vanishingly thin interfacial cohesive zone, characterized by normal and tangential interface force-separation constitutive relations, is assumed to govern separation behavior. Rotationally symmetric cavity shapes (circles) are shown to be solutions of an interfacial integral equation depending on the strain energy density of the matrix, the interface force constitutive relation and the remote loading. Nonsymmetrical cavity formation, under rotationally symmetric conditions of geometry and loading, is treated within the theory of infinitesimal strain superimposed on a given finite strain state. Rotationally symmetric and nonsymmetric bifurcations are analyzed and detailed results, for the Mooney–Rivlin strain energy density and for an exponential interface force-separation law, are presented. For the nonsymmetric rigid body displacement mode, a simple formula for the critical load is presented. The effect on bifurcation behavior of interfacial shear stiffness and other interface parameters is treated as well. In particular we demonstrate that (i) for the smooth interface nonsymmetric bifurcation always precedes rotationally symmetric bifurcation, (ii) unlike rotationally symmetric bifurcation, there is no threshold value of interface parameter for which nonsymmetric bifurcation will not occur and (iii) interfacial shear may significantly delay the onset of nonsymmetric bifurcation. Also discussed is the range of validity of a nonlinear infinitesimal strain theory previously presented by the author (Levy [1]). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The problem of the finite deformation of a composite sphere subjected to a spherically symmetric dead load traction is revisited focusing on the formation of a cavity at the interface between a hyperelastic, incompressible matrix shell and a rigid inhomogeneity. Separation phenomena are assumed to be governed by a vanishingly thin interfacial cohesive zone characterized by uniform normal and tangential interface force–separation constitutive relations. Spherically symmetric cavity shapes (spheres) are shown to be solutions of an interfacial integral equation depending on the strain energy density of the matrix, the interface force constitutive relation, the dead loading and the volume concentration of inhomogeneity. Spherically symmetric and non-symmetric bifurcations initiating from spherically symmetric equilibrium states are analyzed within the framework of infinitesimal strain superimposed on a given finite deformation. A simple formula for the dead load required to initiate the non-symmetrical rigid body mode is obtained and a detailed examination of a few special cases is provided. Explicit results are presented for the Mooney–Rivlin strain energy density and for an interface force–separation relation which allows for complete decohesion in normal separation.  相似文献   

3.
4.
Imperfection sensitivity characteristics of the non-linear buckling load factors of non-optimal and optimal symmetric frames are investigated. The frames are subjected to symmetric proportional vertical loads. The optimization problem is formulated under constraints on linear buckling load factors. Although the buckling load factors corresponding to sway and non-sway modes coincide at the optimum design, the non-sway-type asymmetric bifurcation point disappears as a result of geometrically non-linear analysis. Therefore, the maximum allowable load factors of perfect and imperfect systems should be determined by assigning displacement constraints. It is shown that quantitative evaluation is possible for imperfection sensitivity and mode interaction based on the higher order differential coefficients of the total potential energy even for frames of which the critical points should be numerically obtained. Numerical examples are presented to show that the properties of the non-sway bifurcation point are similar to those of a symmetric bifurcation point, and the interaction between sway and non-sway modes does not always lead to enhancement of imperfection sensitivity.  相似文献   

5.
The steady motions of an axially symmetric rigid satellite orbiting a fixed spherically symmetric rigid body are considered in this paper. Based on a model for the dynamics of the satellite which incorporates the classical approximation for the gravitational potential and includes the attitude-orbit coupling, the bifurcations and non-linear stability of the steady motions of the satellite are discussed. These results extend earlier works on this problem by Likins, Pringle, Rumyantsev, Stepanov, and Thomson, by showing how the motions found by these authors are interrelated, and how several of them are physically unrealistic because their orbital radii are too small.  相似文献   

6.
We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion–coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.  相似文献   

7.
An eigenfunction expansion method is presented to obtain three-dimensional asymptotic stress fields in the vicinity of the front of a penny shaped discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc., subjected to the far-field torsion (mode III), extension/bending (mode I) and sliding shear/twisting (mode II) loadings. Five different discontinuity-surface boundary conditions are considered: (i) penny shaped crack, (ii) penny shaped anticrack or perfectly bonded thin rigid inclusion, (iii) penny shaped thin transversely rigid inclusion (frictionless planar slip permitted), (iv) penny shaped thin rigid inclusion in part perfectly bonded, the remainder with frictionless slip, and (v) penny shaped thin rigid inclusion alongside penny shaped crack. The computed stress singularity for a penny shaped anticrack is the same as that of the corresponding crack. The main difference is, however, that all the stress components at the circular tip of an anticrack depend on Poisson’s ratio under modes I and II.  相似文献   

8.
Many experimental works have recently investigated the dynamics of crease formation during the swelling of long soft slabs attached to a rigid substrate. Mechanically, the spatially constrained growth provokes a residual strain distribution inside the material, and therefore the problem is equivalent to the uniaxial compression of an elastic layer.The aim of this work is to propose a semi-analytical approach to study the non-linear buckling behaviour of a growing soft layer. We consider the presence of a microstructural length, which describes the effect of a simple strain gradient correction in the growing hyperelastic layer, considered as a neo-Hookean material. By introducing a non-linear stream function for enforcing exactly the incompressibility constraint, we develop a variational formulation for performing a stability analysis of the basic homogeneous solution. At the linear order, we derive the corresponding dispersion relation, proving that even a small strain gradient effect allows the system to select a critical dimensionless wavenumber while giving a small correction to the Biot instability threshold. A weakly non-linear analysis is then performed by applying a multiple-scale expansion to the neutrally stable mode. By applying the global conservation of the mechanical energy, we derive the Ginzburg–Landau equation for the critical single mode, identifying a pitchfork bifurcation. Since the bifurcation is found to be subcritical for a small ratio between the microstructural length and the layer׳s thickness, we finally perform a sensitivity analysis to study the effect of the initial presence of a sinusoidal imperfection on the free surface of the layer. In this case, the incremental solution for the stream function is written as a Fourier series, so that the surface imperfection can have a cubic resonance with the linear modes. The solutions indicate the presence of a turning point close to the critical threshold for the perfect system. We also find that the inclusion of higher modes has a steepening effect on the surface profile, indicating the incipient formation of an elastic singularity, possibly a crease.  相似文献   

9.
The present paper deals with spherically symmetric deformation of an inclusion- matrix problem, which consists of an infinite isotropic matrix and a spherically uniform anisotropic piezoelectric inclusion. The interface between the two phases is supposed to be perfect and the system is subjected to uniform loadings at infinity. Exact solutions are obtained for solid spherical piezoelectric inclusion and isotropic matrix. When the system is subjected to a remote traction, analytical results show that remarkable nature exists in the spherical inclusion. It is demonstrated that an infinite stress appears at the center of the inclusion. Furthermore, a cavitation may occur at the center of the inclusion when the system is subjected to uniform tension, while a black hole may be formed at the center of the inclusion when the applied traction is uniform pressure. The appearance of different remarkable nature depends only on one non-dimensional material parameter and the type of the remote traction, while is independent of the magnitude of the traction.  相似文献   

10.
The bifurcations of a rectangular block subject to plane strain tension or compression are investigated. The block material is taken to be incompressible and is characterized by an incrementally linear constitutive law for which “normality” does not necessarily hold. The consequences of non-normality regarding bifurcation are given primary emphasis here. The characteristic regimes of the governing equations (elliptic, parabolic and hyperbolic) are detennined. In each of these regimes both symmetric and antisymmetric diffuse bifurcation modes are available. Additionally, in the hyperbolic and parabolic regimes, bifurcation into a localized shear band mode is also possible. Particular attention is given to the limiting cases of long wavelength and soon wavelength diffuse bifurcation modes. The range of parameter values is identified for which bifurcation into some localized mode may precede bifurcation into a long wavelength diffuse mode. Some difficulties associated with employing a linear incremental solid in a bifurcation analysis, when primary interest is in the bifurcation of an underlying elastic-plastic solid, are also discussed.  相似文献   

11.
Instability of a thin electrolyte film undergoing a direct current electroosmotic flow has been investigated. The film with a compliant electrolyte–air interface is flowing over a rigid charged substrate. Unlike previous studies, inclusion of the Maxwell stresses in the formulation shows the presence of a new finite wavenumber shear-flow mode of instability, alongside the more frequently observed long-wave interfacial mode. The shear mode is found to be the dominant mode of instability when the electrolyte–solid and electrolyte–air interfaces are of opposite charge or of same charge but have very large zeta-potential at the electrolyte–air interface. The conditions for mode-switch (interfacial to shear) and the direction of the travelling waves are discussed through stability diagrams. Interestingly, the analysis shows that when the interfaces are of nearly same zeta potential, the ‘free’ electrolyte–air interface behaves more like a ‘stationary’ wall because of the ion transport in the reverse direction of the flow.  相似文献   

12.
《Comptes Rendus Mecanique》2017,345(10):724-731
We consider an arc-shaped conducting rigid line inclusion located at the interface between a circular piezoelectric inhomogeneity and an unbounded piezoelectric matrix subjected to remote uniform anti-plane shear stresses and in-plane electric fields. Moreover, one side of the rigid line inclusion has become fully debonded from the matrix or the inhomogeneity leading to the formation of an insulating crack. After the introduction of two sectionally holomorphic vector functions, the problem is reduced to a vector Riemann–Hilbert problem, which can be decoupled sequentially by repeated application of the orthogonality relations between the eigenvectors for two corresponding generalized eigenvalue problems.  相似文献   

13.
Starting from Eshelby’s solution of the equivalent inclusion problem, an approximate solution is proposed in order to model interface debonding of a spherical inhomogeneity isolated in a uniform matrix. Both phases are linear elastic but the interface traction-separation law is non-linear. A semi-analytical incremental model is developed which is suitable for any type of loading. For computational efficiency, the model relies on two simplifying assumptions: (i) the eigenstrain is uniform inside the inhomogeneity and (ii) the interface compliance is averaged over inhomogeneity’s surface when computing the average strain within the inhomogeneity. An extensive parametric study is conducted for three loading modes and 144 combinations of non-dimensional parameters. The predictions are assessed against full-field finite element solutions based on two error measures of the mean stress field inside the inhomogeneity. The results show that the mean error value is acceptable in all cases and indicate the parameter ranges for which the model is most accurate.  相似文献   

14.
The solution for a circular inclusion with a prescribed anti-plane eigenstrain is derived. It is shown that the components of the Eshelby tensor within the inclusion, corresponding to a uniform eigenstrain, can be either uniform or non-uniform, depending on the imposed interface conditions. The stress amplification factors due to circular void or rigid inclusion in an infinite medium under remote anti-plane shear stress are calculated. The failure of the couple stress elasticity to reproduce the classical elasticity solution in the limit of vanishingly small characteristic length is indicated for a particular type of boundary conditions. The solution for a circular inhomogeneity in an infinitely extended matrix subjected to remote shear stress is then derived. The effects of the imposed interface conditions, the shear stress and couple stress discontinuities, and the relationship between the inhomogeneity and its equivalent eigenstrain inclusion problem are discussed.  相似文献   

15.
A simple, mode-mixity dependent toughness cohesive zone model (MDGc CZM) is described. This phenomenological cohesive zone model has two elements. Mode I energy dissipation is defined by a traction–separation relationship that depends only on normal separation. Mode II (III) dissipation is generated by shear yielding and slip in the cohesive surface elements that lie in front of the region where mode I separation (softening) occurs. The nature of predictions made by analyses that use the MDGc CZM is illustrated by considering the classic problem of an elastic layer loaded by rigid grips. This geometry, which models a thin adhesive bond with a long interfacial edge crack, is similar to that which has been used to measure the dependence of interfacial toughness on crack-tip mode-mixity. The calculated effective toughness vs. applied mode-mixity relationships all display a strong dependence on applied mode-mixity with the effective toughness increasing rapidly with the magnitude of the mode-mixity. The calculated relationships also show a pronounced asymmetry with respect to the applied mode-mixity. This dependence is similar to that observed experimentally, and calculated results for a glass/epoxy interface are in good agreement with published data that was generated using a test specimen of the same type as analyzed here.  相似文献   

16.
We study the deformation of a crack between a soft elastomer and a rigid substrate with finite interfacial slippage. It is assumed that slippage occurs when the interfacial shear traction exceeds a threshold. This leads to a slip zone ahead of the crack tip where the shear traction is assumed to be equal to the constant threshold. We perform asymptotic analysis and determine closed-form solutions describing the near-tip crack opening displacement and the corresponding stress distributions. These solutions are consistent with numerical results based on finite element analysis. Our results reveal that slippage can significantly affect the deformation and stress fields near the tip of the interface crack. Specifically, depending on the direction of slippage, the crack opening profile may appear more blunted or sharpened than the parabola arising from for the case of zero interfacial shear traction or free slippage. The detailed crack opening profile is determined by the constant shear traction in the slip zone. More importantly, we find that the normal stress perpendicular to the interface can increase or decrease when slippage occurs, depending on the direction of slippage and the shear traction in the slip zone.  相似文献   

17.
The paper presents two new results in the domain of the elastoplastic buckling and post-buckling of beams under axial compression. (i) First, the tangent modulus critical load, the buckling mode and the initial slope of the bifurcated branch are given for a Timoshenko beam (with the transverse shear effects). The result is derived from the 3D J2 flow plastic bifurcation theory with the von Mises yield criterion and a linear isotropic hardening. (ii) Second, use is made of a specific method in order to provide the asymptotic expansion of the post-critical branch for a Euler-Bernoulli beam, exhibiting one new non-linear fractional term. All the analytical results are validated by finite element computations.  相似文献   

18.
K. Haldar 《Rheologica Acta》1988,27(4):434-436
An approximate solution for the problem of fluid flow through a rigid tube with a mild constriction is given. It is assumed that the fluid is visco-elastic (Maxwell fluid) and the constriction is non-symmetric with respect to the radial distance. A theoretical result is given for the wall shear stress and numerical solutions are shown graphically for different values of the relaxation time and the shape parameter of the constriction profile.  相似文献   

19.
The paper presents a method for deriving interface conditions simulating the influence of a thin wedge in a multi-wedge system with smooth contacts. It consists in successive (i) employing the Mellin’s transform, (ii) separation of the symmetric and anti-symmetric parts of a solution, (iii) distinguishing terms tending to infinity, when the wedge angle tends to zero, (iv) appropriate re-arrangement of the terms to avoid degeneration, (v) using truncated power series in equations for the thin wedge and (vi) inspection of the characteristic determinant and finding models simulating the influence of the thin wedge for various combinations of parameters. The paper extends and improves the results previously obtained by the authors for a harmonic problem. The analysis leads to three physical models of contact interaction, which cover all the ratios of shear modules of a thin wedge and neighbour wedges. Numerical examples illustrate the accuracy provided by the method employed and the models derived.  相似文献   

20.
This paper examines the indentation of an elastic body by a rigid spherical inclusion. In contrast to conventional treatments where the contact between a rigid inclusion and the elastic medium is regarded as being perfectly bonded, we examine the influence of non-classical interface conditions including frictionless bilateral contact, separation and Coulomb friction on the load–displacement behaviour of the spherical rigid inclusion. Both analytical methods and boundary element techniques are used to examine the inclusion/elastic medium interaction problems. This paper also provides a comprehensive review of non-classical interface conditions between inclusions and the surrounding elastic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号