首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for {water (1) + propionic acid (2) + diethyl succinate or diethyl glutarate or diethyl adipate (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters layers than in the aqueous layers. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems was predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

2.
(Liquid + liquid) equilibrium (LLE) measurements of the solubility (binodal) curves and tie-line end compositions were carried out for {water (1) + lactic acid (2) + octanol, or nonanol, or decanol (3)} at T = 298.15 K and 101.3 ± 0.7 kPa. The relative mutual solubility of lactic acid is higher in the water layers than in the organic layers. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE results for the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

3.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3)} at T = 298.15 K and (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at T = 298.15 K and p = (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the dibasic esters layers than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

5.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

6.
(Liquid + liquid) equilibrium (LLE) data for the solubility curves and tie-line compositions were examined for mixtures of {water (1) + propionic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at T = 298.15 K and atmospheric pressure, (101.3 ± 0.7) kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters phases than in the aqueous phase. The reliability of the experimental tie-line data were confirmed by using the Othmer–Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC and modified UNIFAC methods. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

7.
(Liquid + liquid) equilibrium data for (water + ethanol + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range (298.2 to 313.2) K. A type 1 (liquid + liquid) phase diagram was obtained for this ternary system. The experimental tie-line data for this system were correlated with the UNIQUAC solution model. The values of the interaction parameters between each pair of components in the system were obtained for the UNIQUAC model with the experimental results. The root mean square deviation between the observed and calculated mole per cent was 1.70%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of ethanol at different temperatures.  相似文献   

8.
The vapor pressures of (ethanol + glycerol) and (water + glycerol) binary mixtures were measured by means of two static devices at temperatures between (273 and 353 (or 363)) K. The data were correlated with the Antoine equation. From these data, excess Gibbs free energy functions (GE) were calculated for several constant temperatures and fitted to a fourth-order Redlich–Kister equation using the Barker method. The (ethanol + glycerol) binary system exhibits positive deviations in GE where for the (water + glycerol) mixture, the GE is negative for all temperatures investigated over the whole composition. Additionally, the NRTL, UNIQUAC and Modified UNIFAC (Do) models have been used for the correlation or prediction of the total pressure.  相似文献   

9.
(Liquid + liquid) equilibrium (LLE) results for the ternary mixtures of (methanol or ethanol + toluene or m-xylene + n-dodecane) at three temperatures (298.15, 303.15 and 313.15) K are reported. The compositions of liquid phases at equilibrium were determined by g.l.c. measurements and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol and ethanol are calculated and compared to suggest which alcohol is more suitable for extracting the aromatic hydrocarbons (toluene or m-xylene) from n-dodecane. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors it is concluded that methanol has a higher efficiency as a solvent in extraction of aromatic hydrocarbon from alkane mixtures.  相似文献   

10.
(Liquid–liquid) equilibrium (LLE) data are investigated for mixtures of (water + propionic acid + oleyl alcohol) at 298.15, 308.15 and 318.15 K and atmospheric pressure. The solubility curves and the tie-line end compositions of liquid phases at equilibrium were determined, and the tie-line results were compared with the data predicted by the UNIFAC method. The phase diagrams for the ternary mixtures including both the experimental and correlated tie-lines are presented. The distribution coefficients and the selectivity factors for the immiscibility region are calculated to evaluate the effect of temperature change. The reliability of the experimental tie-lines was confirmed by using Othmer–Tobias correlation. It is concluded that oleyl alcohol may serve as an adequate solvent to extract propionic acid from its dilute aqueous solutions. The UNIFAC model correlates the LLE data for 298.15, 308.15 and 318.15 K with a root mean square deviation of 5.89, 6.46, and 6.69%, respectively, between the observed and calculated mole concentrations.  相似文献   

11.
Experimental (liquid + liquid) equilibrium (LLE) data were determined for a ternary system (polyvinylpyrrolidone + MgSO4 + water) at various temperatures of (298.15, 303.15, and 308.15) K. The UNIQAC, modified regular solution, modified Wilson and Chen-NRTL models were used to correlate the experimental tie-line data. The results show that at each temperature, the quality of fitting is better with the Chen-NRTL model.  相似文献   

12.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + dipropyl ether) and (water + propionic acid + diisopropyl ether) were measured at T = 298.2 K and atmospheric pressure. The tie-line data were correlated by means of the UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases.  相似文献   

13.
In this work, trioctyl methyl ammonium chloride (Aliquat 336) was studied for its ability to extract propionic acid at various amine concentrations. The extraction of propionic acid with Aliquat 336 dissolved in five single solvents (cyclohexane, hexane, toluene, methyl isobutyl ketone, and ethyl acetate ) and binary solvents (hexane + MIBK, hexane + toluene, and MIBK + toluene) was investigated under various experimental conditions. The loading factors Z, extraction efficiency E and overall particular distribution coefficients were determined. All measurements were carried out at T = 298.15 K. The obtained results and the observed phenomena were discussed by taking into consideration the mechanism of extraction and the concentration of the interaction product in the aqueous phase.  相似文献   

14.
(Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters.  相似文献   

15.
Experimental tie-line results and phase diagrams were obtained for the ternary systems of {water + propionic acid + organic solvent (cyclohexane, toluene, and methylcyclohexane)} at T = 303.2 K and atmospheric pressure. The organic solvents were two cycloaliphatic hydrocarbons (i.e., cyclohexane and methylcyclohexane) and an aromatic hydrocarbon (toluene). The experimental tie-lines values were also compared with those calculated by the UNIQUAC and NRTL models. The consistency of the values of the experimental tie-lines was determined through the Othmer–Tobias and Hands plots. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients and separation factors. The Kamlet LSER model was applied to correlate distribution coefficients and separation factors in these ternary systems. The LSER model values showed a good regression to the experimental results.  相似文献   

16.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + 2-ethyl-1-hexanol) were determined at atmospheric pressure over the temperature range of (298.15 to 308.15) K. A type-1 LLE phase diagram was obtained for this ternary system. The LLE data were correlated fairly well with UNIQUAC model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.57%. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvent.  相似文献   

17.
The density, dynamic viscosity, and refractive index of the ternary system (ethanol + water + 1,3-dimethylimidazolium methylsulphate) at T = 298.15 K and of its binary systems 1,3-dimethylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, and 328.15) K and at 0.1 MPa have been measured over the whole composition range. From these physical properties, excess molar volumes, viscosity deviations, refractive index deviations, and excess free energy of activation for the binary systems at the above mentioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. For the ternary system, the excess properties were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models.  相似文献   

18.
The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol), (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography.The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents.The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents.  相似文献   

19.
(Liquid + liquid) equilibrium (LLE) data for (water + acetic acid + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range of (298.2 to 313.2) K. The UNIFAC model was used to predict the observed LLE data with a root-mean-square deviation value of 2.03%. A high degree of consistency of experimental data was obtained using the Othmer–Tobias correlation. The solubility of water in 2-ethyl-1-hexanol was measured at different temperatures.  相似文献   

20.
Experimental (liquid + liquid) equilibrium data were obtained for the extraction of toluene from n-decane by mixed-solvents (ethanol + water) and (ethanol + methanol) at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure.The measured tie-line data for two quaternary mixtures of {(ethanol +  water) + toluene + n-decane} and {(ethanol + methanol) + toluene + n-decane} are presented. The experimental quaternary (liquid + liquid) equilibrium data have been correlated using the NRTL activity coefficient model to obtain the binary interaction parameters of these components. The NRTL models predict the equilibrium compositions of the quaternary mixtures with small deviations. The partition coefficients and the selectivity factor of the mixed-solvents used were calculated and presented. From our experimental and calculated results, we conclude that for the extraction of toluene from n-decane mixtures the mixed-solvent (ethanol + methanol) has a higher selectivity factor than the other mixed-solvent at the three temperatures studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号