首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
与界面相交的裂纹尖端的应力奇异性分析   总被引:7,自引:1,他引:7  
为了确定与结合材料的界面相交的裂纹尖端附近的应力奇异性次数,提出了一种基于最小势能原理的一维特殊有限元法,以奇异点为原点半径r0的扇形奇异区域,可以简化为一维线性领域,即一条以代表结合材料的两个自由表面为端点的线段。对该一维线性领域作网格划分,采用三节点一维等参数二次单元。数值计算结果与已有理论解的比较表明,该方法具有很高的精度和效率,最后,利用文中给出的方法,得到了各向异性结合材料中与界面以任意角相交的裂纹尖端的奇异性次数随裂纹的变化规律。  相似文献   

2.
提出了用插值矩阵法分析与各向异性材料界面相交的平面裂纹应力奇异性。基于V形切口尖端附近区域位移场渐近展开,将位移场的渐近展开式的典型项代入线弹性力学基本方程,得到关于平面内与复合材料界面相交的裂纹应力奇异性指数的一组非线性常微分方程的特征值问题,运用插值矩阵法求解,获得了平面内各向异性结合材料中与界面以任意角相交的裂纹尖端的应力奇异性指数随裂纹角的变化规律,数值计算结果与已有结果比较表明,本文方法具有很高的精度和效率。  相似文献   

3.
陈华鹏 《力学学报》1992,24(2):247-252
本文根据各向异性材料的特征值与特征函数理论,用极其简单的矩阵形式,建立了复合楔形和裂纹止于两材料界面等情况下确定应力奇异阶次的特征方程,讨论了应力奇异性的一些特性,计算了各种情况下的应力奇异阶次。  相似文献   

4.
The electroelastic analysis of two bonded dissimilar piezoelectric ceramics with a crack perpendicular to and terminating at the interface is made. By using Fourier integral transform, the associated boundary value problem is reduced to a singular integral equation with generalized Cauchy kernel, the solution of which is given in closed form. Results are presented for a permeable crack under anti-plane shear loading and in-plane electric loading. Obtained results indicate that the electroelastic field near the crack tip in the homogeneous piezoelectric ceramic is dominated by a traditional inverse square-root singularity, while the electroelastic field near the crack tip at the interface exhibits the singularity of power law rα, r being distance from the interface crack tip and α depending on the material constants of a bi-piezoceramic. In particular, electric field has no singularity at the crack tip in a homogeneous solid, whereas it is singular around the interface crack tip. Numerical results are given graphically to show the effects of the material properties on the singularity order and field intensity factors.  相似文献   

5.
与两相材料界面接触的裂纹对SH波的散射   总被引:1,自引:0,他引:1  
陆建飞  汪越胜  蔡兰 《力学学报》2003,35(4):432-436
利用积分变换方法得出了两相材料中作用简谐集中力时的格林函数.根据所得的格林函数并利用Betti-Rayleigh互易定理得出了与界面接触裂纹的散射波场.裂纹的散射波场可分解为两部分,一部分为奇异的散射场,另一部分为有界的散射场.利用分解后的散射场,可得裂纹在SH波作用下的超奇异积分方程.根据裂纹散射场的奇异部分和Cauchy型奇异积分的性质得出了裂纹和界面接触点处的奇性应力指数和接触点角形域内的奇性应力.利用所得的奇性应力定义了裂纹和界面接触点处的动应力强度因子.对所得超奇异积分方程的数值求解可得裂纹端点和接解点处的应力强度因子。  相似文献   

6.
The problem of the evaluation of the generalized stress-intensity factors for re-entrant corners in multi-layered structural components is addressed. An approximate analytical model based on the theory of multi-layered beams is presented. This approach provides a simple closed-form solution for the direct computation of the Mode I stress-intensity factor for the general problem of a re-entrant corner symmetrically meeting a bi-material interface. For the self-consistency of the theory, re-entrant corners in homogeneous materials and cracks perpendicular to bi-material interfaces can also be gained as limit cases of this formulation. According to this approach, the effects of the elastic mismatch parameters, the value of the notch angle and the thicknesses of the layers on the stress-intensity factor are carefully quantified and the results are compared with FE solutions. FE results are obtained by applying a combination of analytical and numerical techniques based on the knowledge a priori of the asymptotic stress field for re-entrant corners perpendicular to a bi-material interface and on the use of generalized isoparametric singular finite elements at the notch tip. A good agreement between approximate and analytical/numerical predictions is achieved, showing the effectiveness of this approach.  相似文献   

7.
Based upon linear fracture mechanics, it is well known that the singular order of stresses near the crack tip in homogeneous materials is a constant value −1/2, which is nothing to do with the material properties. For the interface cracks between two dissimilar materials, the near tip stresses are oscillatory due to the order of singularity being −1/2 ± iε and −1/2. The oscillation index ε is a constant related to the elastic properties of both materials. While for the general interface corners, their singular orders depend on the corner angle as well as the elastic properties of the materials. Owing to the difference of the singular orders of homogeneous cracks, interface cracks and interface corners, their associated stress intensity factors are usually defined separately and even not compatibly. Since homogenous cracks and interface cracks are just special cases of interface corners, in order to build a direct connection among them a unified definition for their stress intensity factors is proposed in this paper. Based upon the analytical solutions obtained previously for the multibonded anisotropic wedges, the near tip solutions for the general interface corners have been divided into five different categories depending on whether the singular order is distinct or repeated, real or complex. To provide a stable and efficient computing approach for the general mixed-mode stress intensity factors, the path-independent H-integral based on reciprocal theorem of Betti and Rayleigh is established in this paper. The complementary solutions needed for calculation of H-integral are also provided in this paper. To illustrate our results, several different kinds of examples are shown such as cracks in homogenous isotropic or anisotropic materials, central or edge notches in isotropic materials, interface cracks and interface corners between two dissimilar materials.  相似文献   

8.
A theoretical treatment of antiplane crack problem of two collinear cracks on the two sides of and perpendicular to the interface between a functionally graded orthotropic strip bonded to an orthotropic homogeneous substrate is put forward. Various internal cracks and crack terminating at the interface and crack crossing the interface configurations are investigated, respectively. The problem is formulated in terms of a singular integral equation with the crack face displacement as the unknown variable. The asymptotic stress field near the tip of a crack crossing the interface is examined, and it is shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case, the “kink” in material property at the interface does not introduce any singularity. Numerical calculations are carried out, and the influences of the orthotropy and nonhomogeneous parameters and crack interactions on the mode III stress intensity factors are investigated.  相似文献   

9.
Using Green’s functions, the extended general displacement solutions of a three-dimensional crack problem in anisotropic electro-magneto-elastic (EME) bimaterials under extended loads are analyzed by the boundary element method. Then, the crack problem is reduced to solving a set of hypersingular integral equations (HIE) coupled with boundary integral equations. The singularity of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of HIE, and the exact analytical solutions of the extended singular stresses and extended stress intensity factors (SIFs) near the crack front in anisotropic EME bimaterials are given. Also, the numerical method of the HIE for a rectangular crack subjected to extended loads is put forward with the extended crack opening dislocation approximated by the product of basic density functions and polynomials. At last, numerical solutions of the extended SIFs of some examples are obtained.  相似文献   

10.
三维双材料结构的应力奇异性分析   总被引:1,自引:1,他引:1  
应用有限单元法子模型技术,对具有不同界面角的三维双材料结构的应力奇异性进行了分析。结果表明,应用子模型技术估算三维双材料结构的应力奇异性指数是有效的。然后分析了界面端线和界面端点处附近奇异性指数,得到了一些重要而有趣的结果。最后对消除三维双材料结构应力奇异性的几何条件进行了讨论。  相似文献   

11.
The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi- tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul- tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).  相似文献   

12.
The characteristic equations for the order of stress singularity of anisotropic bimaterial wedges subjected to traction boundary conditions are investigated. For an angle-ply bimaterial wedge, both fully bonded and frictional interfaces are considered, whereas for a monoclinic bimaterial wedge, a frictional interface is considered. Here, the Stroh formalism and the separation of variables technique are used. In general, the order of stress singularity can be real or complex, but for the special geometry of a crack along the frictional interface of a monoclinic composite, it is always real. Explicit characteristic equations for the order of singularity are presented for an aligned orthotropic composite with a frictional interface. Numerical results are given for an angle-ply bimaterial wedge and a monoclinic bimaterial wedge consisting of a graphite/epoxy fiber-reinforced composite.  相似文献   

13.
With the help of the coordinate transformation technique, the symplectic dual solving system is developed for multi-material wedges under antiplane deformation. A virtue of present method is that the compatibility conditions at interfaces of a multi-material wedge are expressed directly by the dual variables, therefore the governing equation of eigenvalue can be derived easily even with the increase of the material number. Then, stress singularity on multi-material wedges under antiplane deformation is investigated, and some solutions can be presented to show the validity of the method. Simultaneously, an interesting phenomenon is found and proved strictly that one of the singularities of a special five-material wedge is independent of the crack direction.  相似文献   

14.
Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With consideration of the boundary conditions, a new stress function is introduced to transform the problem of bi-material interface crack into a boundary value problem of partial differential equations. Two sets of non-homogeneous linear equations with 16 unknowns are constructed. By solving the equations, the expressions for the real bi-material elastic constant εt and the real stress singularity exponents λt are obtained with the bi-material engineering parameters satisfying certain conditions. By the uniqueness theorem of limit,undetermined coefficients are determined, and thus the bi-material stress intensity factor in mixed cracks is obtained. The bi-material stress intensity factor characterizes features of mixed cracks. When orthotropic bi-materials are of the same material, the degenerate solution to the stress intensity factor in mixed bi-material interface cracks is in complete agreement with the present classic conclusion. The relationship between the bi-material stress intensity factor and the ratio of bi-material shear modulus and the relationship between the bi-material stress intensity factor and the ratio of bi-material Young's modulus are given in the numerical analysis.  相似文献   

15.
For a crack impinging upon a bimaterial interface at an angle, the singular stress field is a linear superposition of two modes, usually of unequal exponents, either a pair of complex conjugates, or two unequal real numbers. In the latter case, a stronger and a weaker singularity coexist (known as split singularities). We define a dimensionless parameter, called the local mode mixity, to characterize the proportion of the two modes at the length scale where the processes of fracture occur. We show that the weaker singularity can readily affect whether the crack will penetrate, or debond, the interface.  相似文献   

16.
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113–2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent ?1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.  相似文献   

17.
The antiplane shear deformation of a bi-material wedge with finite radius is studied in this paper. Depending upon the boundary condition prescribed on the circular segment of the wedge, traction or displacement, two problems are analyzed. In each problem two different cases of boundary conditions on the radial edges of the composite wedge are considered. The radial boundary data are: traction–displacement and traction–traction. The solution of governing differential equations is accomplished by means of finite Mellin transforms. The closed form solutions are obtained for displacement and stress fields in the entire domain. The geometric singularities of stress fields are observed to be dependent on material property, in general. However, in the special case of equal apex angles in the traction–traction problem, this dependency ceases to exist and the geometric singularity shows dependency only upon the apex angle. A result which is in agreement with that cited in the literature for bi-material wedges with infinite radii. In part II of the paper, Antiplane shear deformation of bi-material circular media containing an interfacial edge crack is considered. As a special case of bi-material wedges studied in part I of the paper, explicit expressions are derived for the stress intensity factor at the tip of an edge crack lying at the interface of the bi-material media. It is seen that in general, the stress intensity factor is a function of material property. However, in special cases of traction–traction problem, i.e., similar materials and also equal apex angles, the stress intensity factor becomes independent of material property and the result coincides with the results in the literature.  相似文献   

18.
This paper presents a new method for the stress singularity analysis near the crack corners of a multi-material junctions. The stress singularities near the crack corners of multi-dissimilar isotropic elastic material junctions are studied analytically in terms of the methods developed in Hamiltonian system. The governing equations of plane elasticity in a sectorial domain are derived in Hamiltonian form via variable substitution and variational principle respectively. Both of the methods of global state variable separation and symplectic eigenfunction expansion are used to find the analytical solution of the problem. The relationships among the state vectors in different material spaces are obtained by means of coordinate transformation and consistent conditions between the two adjacent domains. The expression of the original problem is thus changed into a new form where the solutions of symplectic generalized eigenvalues and eigenvectors are needed. The closed form of expressions is established for the stress singularity analysis near the corner with arbitrary vertex angles. Numerical results are presented with several chosen angles and multi-material constants. To show the potential of the new method proposed, a semi-analytical finite element is furthermore developed for the numerical analysis of crack problems.  相似文献   

19.
Multi-material wedges associated with convergence of geometrical and material discontinuity lines generally show singular stress fields around the vertex of the wedge. In this paper, the eigenvalue problem for a multi-material wedge composed of several anisotropic elastic sectors is formulated in a completely generally manner, including the cases of degenerate and extra-degenerate material sectors, and various types of edge conditions for both open and closed wedges. General representation of the elasticity solution in a degenerate or extra-degenerate anisotropic sector requires higher-order eigenmodes (generalized eigenfunctions) in addition to zeroth-order eigenmodes. Such higher-order eigenmodes are obtained from appropriate analytical expressions of the zeroth-order eigenmode by using the derivative rule. The analysis is applied to one bisector wedge and one trisector wedge in a three-layer cracked composite model to obtain accurate elasticity solutions of the singular stress fields. These solutions were determined using the traction data generated on a circular collocation path by a conventional finite element analysis.  相似文献   

20.
Damaged nonlinear antiplane shear problems with a variety of singularities are studied analytically. A deformation plasticity theory coupled with damage is employed in analysis. The effect of microscopic damage is considered in terms of continuum damage mechanics approach. An exact solution for the general damaged nonlinear singular antiplane shear problem is derived in the stress plane by means of a hodograph transformation, then corresponding higher order asymptotic solutions are obtained by reversing the stress plane solution to the physical plane. As example, traction free sharp notch and crack, rigid sharp wedge and flat inclusion, and mixed boundary sharp notch problems are investigated, respectively. Consequently, higher order fields are obtained, in which analytical expressions of the dominant and second order singularity exponents and angular distribution functions of the near tip fields are derived. Effects of the damage and hardening exponents of materials and the geometric angle of notch/wedge on the near tip quantities are discussed in detail. It is found that damage leads to a weaker dominant singularity of stress, but to little stronger singularities of the dominant and second order terms of strain compared to that for undamaged material. It is also seen that damage has important effect on the angular distribution functions of the near tip stress and strain fields. As special cases, higher order analytical solutions of the crack and rigid flat inclusion tip fields are obtained, respectively, by reducing the notch/wedge tip solutions. Effects of damage and hardening exponents on the dominant and second order terms in the solutions of the crack and inclusion tip fields are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号