首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fluid Phase Equilibria》2006,240(1):40-45
In this paper, the activity coefficients of amino acids and simple peptides in aqueous solutions were correlated by using a three parameters model based on the perturbation theory. The adjustable parameters of this model were obtained from the experimental data and a relation for calculating the activity coefficient is derived. The calculated activity coefficients of amino acids and simple peptides obtained show that the equation of state based on the perturbation model can be used to correlate the activity coefficients of amino acids more accurately than the other models. A correlation for the solubility of amino acids in aqueous solutions is also derived. The results show that this correlation can accurately correlate the solubility of amino acids in aqueous solution over a wide range of temperatures (0–100 °C).  相似文献   

2.
In this work, the modified Wilson model was used to obtain the activity coefficients of amino acids and simple peptides in non-electrolyte aqueous solutions. The Wilson model was modified using the new local mole fraction proposed by Zhao et al. and non-random case for the reference state. The binary interaction parameters (BIP) of the modified Wilson model for amino acid–water pairs were obtained using the experimental data of the activity coefficients for amino acids available in the literature. The modified Wilson model was also used to correlate the solubility of amino acids in water and the values of Δh/R, Δs/R, and Δg/R of the solutions studied were reported. The results obtained showed that the modified Wilson model can accurately correlate the activity coefficients as well as the solubility of amino acids and simple peptides in aqueous solutions. Also the modified Wilson model was coupled with the Pazuki–Rohani model to correlate the mean ionic activity coefficients of electrolytes in aqueous amino acid solutions. The results showed that the proposed model can accurately correlate the activity coefficients of the electrolytes in aqueous amino acid solution.  相似文献   

3.
Densities of amino acids in aqueous and in aqueous electrolyte solutions have been measured by a high precision vibrating tube digital densitometer at T = 298.15 K under atmospheric pressure. The investigated systems contained amino acids of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly2), triglycine (Gly3), and tetraglycine (Gly4) and cyclic glycylglycine (c(GG)) with electrolytes of potassium chloride (KCl), potassium bromide (KBr) and potassium acetate (KAc). In this series of measurements, the aqueous samples were prepared with various concentrations of the amino acids, up to saturated conditions, and over salt concentrations from 1 to 4 M. The density increments resulting from the addition of the different model compounds of amino acids and the ionic salts were investigated, respectively. An empirical linear combination equation with an augmented term to account the interactions between amino acid and ionic salt was used to quantitatively correlate the experimental densities over the entire concentration ranges.  相似文献   

4.
Water activity measurements by the isopiestic method have been carried out on the aqueous ternary system of {l-serine + 1-(2-carboxyethyl)-3-methylimidazolium chloride[HOOCEMIM][Cl]} ionic liquid and the aqueous binary system of IL at T = 298.15 K and atmospheric pressure. The data obtained were used to calculate the vapor pressure and osmotic coefficient of solution as a function of concentration. The experimental results for the activity of water were accurately correlated with segment-based local composition models of modified NRTL and UNIQUAC. The fitting quality of the above models has been favorably compared with the NRTL and Wilson models. From these data, the corresponding activity coefficients have been calculated. For the same system, the solubility of the l-serine at various [HOOCEMIM][Cl] ionic liquid concentrations was measured at T = 298.15 K using the gravimetric method. A chemical model was employed to describe the dissociation equilibria of all amino acid species with hydrogen ions in water. Moreover, for l-serine, the chemical model indicated that the formation of cations is insignificant in the [HOOCEMIM][Cl] solution. Also the above local composition models were used to predict the solubility of l-serine in aqueous IL solutions. To provide information regarding (solute + solute) interactions, transfer Gibbs free energies (ΔGtr) of amino acid from water to aqueous IL solutions have been determined.  相似文献   

5.
The apparent molar volumes Vφ of glycine, alanine, valine, leucine, and lysine have been determined in aqueous solutions of 0.05, 0.5, 1.0 mol · kg−1 sodium dodecyl sulfate (SDS) and 1.0 mol · kg−1 cetyltrimethylammonium bromide (CTAB) by density measurements at T=298.15 K. The apparent molar volumes have also been determined for diglycine and triglycine in 1 mol · kg−1 SDS and CTAB solutions. These data have been used to calculate the infinite dilution apparent molar volumes V20 for the amino acids and peptides in aqueous SDS and CTAB and the standard partial molar volumes of transfer (ΔtrV2,m0) of the amino acids and peptides to these aqueous surfactant solutions. The linear correlation of V20 for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO), CH2 group and other alkyl chains of the amino acids to V20. The results on the partial molar volumes of transfer from water to aqueous SDS and CTAB have been interpreted in terms of ion–ion, ion–polar and hydrophobic–hydrophobic group interactions. The volume of transfer data suggests that ion–ion or ion–hydrophilic group interactions of the amino acids and peptides are stronger with SDS compared to those with CTAB. Comparison of the hydration numbers of amino acids calculated in the present studies with those in other solvents from literature shows that these numbers are almost the same at 1 mol · kg−1 level of the cosolvent/cosolute. Increasing molality of the cosolvent/cosolute beyond 1 mol · kg−1 lowers the hydration number of the amino acids due to increased interactions with the solvent and reduced electrostriction.  相似文献   

6.
The mixing enthalpies of N,N′-hexamethylenebisacetamide (HMBA) and N-methylformamide (NMF) with glycine, l-alanine, l-serine, and l-valine in aqueous sucrose solutions have been determined by using mixing-flow isothermal microcalorimetry at the temperature of 298.15 K along with their dilution enthalpies, respectively. Based on the obtained results, the heterotactic enthalpic interaction coefficients (hxy, hxxy, and hxyy) have been obtained according to McMillan–Mayer’s theory with the sucrose molality from 0 to 1.5 mol · kg−1. The fitted results indicate that the values of hxy between HMBA or NMF and the four investigated amino acids in aqueous sucrose solutions are all positive. Meanwhile, the values of hxy reach the corresponding maximum at different sucrose molalities except that the values of hxy between NMF and glycine decrease monotonically with the increasing molality of sucrose. Furthermore, the order for the value of hxy of the four amino acids with HMBA or NMF are hxy (l-valine) > hxy (l-alanine) > hxy (l-serine) > hxy (glycine) in pure water or in aqueous solution with the same molality of sucrose. The values of hxy between HMBA and the four amino acids are much larger than that between NMF and the same amino acids with the same molality of sucrose. All the variations of the heterotactic enthalpic pairwise interaction coefficients in the quaternary systems can be interpreted with the help of the solute–solute and solute–solvent interactions theory.  相似文献   

7.
We have preformed first-principle calculations for the structural, vibrational and thermodynamic properties of the IIB–VIA Zn-based semiconductor compounds ZnX (X = O, S, Se, Te). The phonon dispersion curves along several high-symmetry lines at the Brillouin zone together with the corresponding phonon density of states are calculated using density-functional perturbation theory. The calculated phonon frequencies at the Γ, X, and L points of the Brillouin zone show good agreement with the experimental values and other calculations. The thermodynamics properties including the phonon contribution to the Helmholtz free energy ΔF, the phonon contribution to the internal energy ΔE, the entropy S, and the constant-volume specific heat CV are determined within the harmonic approximation based on the calculated phonon dispersion relations. If 298 K is taken as a reference temperature, the difference values of H ? H298 have been also calculated and compared with the available experimental data.  相似文献   

8.
Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan–Mayer theory from the experimental data. For all the systems studied, the dilution of α,ω-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute–solvent and solute–solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.  相似文献   

9.
The Jones–Dole viscosity B-coefficients for various mono-, di-, and tri-saccharides in water and in (0.5, 1.0, 2.0, and 3.0) mol · kg?1 aqueous solutions of sodium acetate have been determined at different temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from viscosity data. Densities used to determine viscosities have been reported earlier. The viscosity B-coefficients of transfer, ΔtB, has been estimated for the transfer of saccharides from water to aqueous sodium acetate solutions. The positive ΔtB values were obtained in all cases and their magnitudes increase with the increase in concentration of sodium acetate. Pair, ηAB and higher order, ηABB viscometric interaction coefficients (using McMillan–Mayer theory), and dB/dT coefficients have also been determined. Activation Gibbs free energies and other related thermodynamic activation parameters of viscous flow have been determined using Feakin’s transition-state theory. These parameters have been discussed in terms of solute–solute and solute–solvent interactions occurring in these solutions.  相似文献   

10.
Precise density and sound velocity measurements have been carried out for aqueous solutions of PPG725 in the absence and presence of (0.2 and 0.5) mol · kg−1 amino acids: alanine, glycine, serine and proline, and also for aqueous solutions of these amino acids in the absence and presence of 0.01 w/w PPG725 at T = (288.15, 293.15, 298.15, 303.15 and 308.15) K. From the experimental density and sound velocity values, the apparent molar volume and isentropic compressibility have been obtained and extrapolated to infinite dilution. The infinite dilution apparent molar properties for transfer of PPG from water to aqueous amino acids solutions and also those for transfer of amino acids from water to aqueous PPG solutions have been studied. Temperature dependency of the infinite dilution apparent molar volume was utilised to determine structure-breaker or structure-maker effects of the solutes. Hydration numbers of the amino acids in the investigated aqueous solutions have been evaluated from the volumetric and compressibility properties. All results are discussed based on the salting-out aptitude of the amino acids (hydrophilic + hydrophobic) interactions and (hydrophobic + hydrophobic) interactions occurred between PPG and the investigated amino acids.  相似文献   

11.
The protonation equilibria for 20 standard α-amino acids in solutions have been studied pH-potentiometrically. The dissociation constants (pKa) of 20 amino acids and the thermodynamic functions (ΔG, ΔH, ΔS, and δ) for the successive and overall protonation processes of amino acids have been derived at different temperatures in water and in three different mixtures of water and dioxane (mole fractions of dioxane were 0.083, 0.174, and 0.33). Titrations were also carried out in water ionic strengths of (0.15, 0.20, and 0.25) mol · dm−3 NaNO3, and the resulting dissociation constants are reported. A detailed thermodynamic analysis of the effects of organic solvent (dioxane), temperature and ionic strength influencing the protonation processes of amino acids is presented and discussed to determine the factors which control these processes.  相似文献   

12.
The partitioning of four dinitrophenylated (DNP-) amino acids in aqueous two-phase systems of (polyethylene glycol (PEG)-8000 + sodium sulfate) and (polyethylene glycol (PEG)-8000 + magnesium sulfate) in five different tie-lines was experimentally determined at T = 298.15 K. The Gibbs energy of transfer of a methylene group between the two phases was calculated from the measured partition coefficients. This characterizes the relative hydrophobicity of the equilibrium phases. Values of ΔG1(CH2) were in range from (−0.674 to −1.012) kJ · mol−1. A comparison of both systems was carried out. The results show that the cation type has a strong influence on the amino acids partitioning process. The largest relative hydrophobicity was noted for the ATPS system formed by sodium sulfate. This showed to be a better system for the separation.  相似文献   

13.
In this work, the primitive SAFT equation of state along with three different hard-sphere equations was used to correlate and predict mean ionic activity coefficients of aqueous electrolyte solutions. The mean ionic activity coefficient of aqueous electrolyte solutions was considered as the contribution of hard-sphere and dispersion effects. The Mansoori (M), Wang-Khoshkbarchi-Vera (WKV) and Ghotbi-Vera (GV) hard-sphere equations were applied in correlating the mean ionic activity coefficient of electrolyte solutions. The comparison among above indicated equations was shown. First, vapor pressure and densities of water in the temperature range of 373.15 to 423.15 K was regressed by SAFT equation of state. In the restrictive primitive mean spherical model, ions were hard spheres without any chain structure. Neither association effects were considered in this study. Clearly, in common used five SAFT parameters were decreased to three, which were calculated by using the experimental mean ionic activity coefficients of electrolyte solutions. The comparison among three hard-sphere equations of state approved that Ghotbi-Vera hard-sphere model (GV) correlated the experimental data accurately than the others; two hard-sphere models. The mean ionic activity coefficients of some electrolyte solutions were being predicted by taking the advantage of the regressed values surely, in a wide range of molality.  相似文献   

14.
In the present work, the solubility of CO2 in aqueous solutions of potassium prolinate (KPr) and potassium α-aminobutyrate (KAABA) was measured at temperatures (313.2, 333.2, and 353.2) K and CO2 partial pressures up to 1000 kPa for amino acid salt concentrations: KPr, w = (7.5, 14.5, and 27.4 wt%) and KAABA, w = (6.9, 13.4, and 25.6 wt%). It was found that the CO2 absorption capacities of the studied amino acid salt systems were considerably high and comparable with that of industrially important alkanolamines including monoethanolamine. The CO2 loadings in aqueous potassium α-aminobutyrate at high pressures were also found to be generally higher than the loadings in aqueous potassium prolinate. A modified Kent–Eisenberg model was applied to correlate the CO2 solubility in the amino acid salt solution as function of CO2 partial pressure, temperature, and concentration. The model gave good representation of the (vapour + liquid) equilibrium data obtained for the amino acid salt systems studied, and provided accurate predictions of the solubility.  相似文献   

15.
The apparent molar volumes and isentropic compressibility of glycine, l-alanine and l-serine in water and in aqueous solutions of (0.500 and 1.00) mol · kg?1 di-ammonium hydrogen citrate {(NH4)2HCit} and those of (NH4)2HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH4)2HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH4)2HCit}, {alanine + (NH4)2HCit}, and {serine + (NH4)2HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.  相似文献   

16.
Water activities of aqueous electrolyte solutions of HCl(aq), LiCl(aq), NaCl(aq), KCl(aq), CsCl(aq), NH4Cl(aq), MgCl2(aq), CaCl2(aq), and BaCl2(aq) have been determined at T =  298.15 K by the hygrometric method, and at molalities ranging from 0.2 mol · kg  1to saturation. From measurements of droplets diameters of reference NaCl(aq) or LiCl(aq), the dependence of relative humidity on solute concentration was determined. The data on the relative humidities allow the deduction of water activities and the osmotic coefficients at different molalities. Osmotic coefficient data have been described by the ion interaction model of Pitzer. The ion interaction parameters were also determined for each of the studied salts. With these parameters, the solute activity coefficients can be predicted. Our present results have been compared with reported thermodynamic data.  相似文献   

17.
Equilibrium studies have been carried out on complex formation of M(II) (M = Co(II), Cu(II) and Zn(II)) with tricine (Tn) and L = amino acids in aqueous solution, at 25 °C and ionic strength of I = 0.1 M (NaNO3). The ternary complexes of amino acids are formed by simultaneous reactions. The concentration distribution of the complexes is evaluated. The solid complexes of [M(II)–Tn–Histidine (Hist)] have been synthesized and characterized by elemental analysis, infrared, magnetic and conductance measurements. The synthesized complexes have been screened for their antibacterial activities and the complexes show a significant antibacterial activity against four bacterial species: Staphylococcus aureus (Gram +ve), Streptococcus pyogenesr (Gram +ve), Serratia marcescens (Gram −ve) and Escherichia coli (Gram −ve). The activity increases by increasing the concentration of the complexes.  相似文献   

18.
The relative hydrophobicity of the phases of several {polyethylene glycol (PEG) 8000 + sodium sulfate (Na2SO4)} aqueous two-phase systems (ATPSs), all containing 0.01 mol · L?1 sodium phosphate buffer (NaPB, pH 7.4) and increasing concentration of a salt additive, NaCl or KCl, up to 1.0 mol · L?1, was measured by the free energy of transfer of a methylene group between the phases, ΔG(CH2). The ΔG(CH2) of the systems was determined by partitioning of a homologous series of five sodium salts of dinitrophenylated (DNP) – amino acids with aliphatic side chains in three different tie-lines of each biphasic system. The relative hydrophobicity of the phases ranged from ?0.125 to ?0.183 kcal · mol?1, being the NaCl salt the one to provide the more effective changes. The results show that, within each system, there is a linear relationship between the ΔG(CH2) and the tie-line length (TLL), and biphasic systems with high salt additive concentration present the most negative ΔG(CH2) values. Therefore, the feasibility of establishing a relationship between the relative hydrophobicity of the phases in a given TLL and the ionic strength of the salt additive was investigated and a satisfactory correlation was found for each salt.  相似文献   

19.
We have measured the densities of aqueous solutions of isoleucine, threonine, and equimolal solutions of these two amino acids with HCl and with NaOH at temperatures 278.15  T/K  368.15, at molalities 0.01  m/mol · kg−1  1.0, and at the pressure 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from each of the protonated aqueous cationic amino acids. We used Young’s Rule and integrated these results iteratively to account for the effects of equilibrium speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure gave parameters for Vϕ(T, m) and Cp,ϕ(T, m) for threoninium and isoleucinium chloride and for sodium threoninate and isoleucinate which modeled our observed results within experimental uncertainties. We report values for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous threonine and isoleucine as functions of T and m.  相似文献   

20.
The viscosities, η of mono-, di-, tri-saccharides and methylglycosides, viz., d(+)-xylose (XYL), d(?)-arabinose (ARA), d(?)-ribose (RIB), d(?)-fructose (FRU), d(+)-galactose (GAL), d(+)-mannose (MAN), d(+)-glucose (GLU), d(+)-melibiose (MEL), d(+)-cellobiose (CEL), d(+)-lactose monohydrate (LAC), d(+)-maltose monohydrate (MAL), d(+)-trehalose dihydrate (TRE), sucrose (SUC), d(+)-raffinose pentahydrate (RAF), α-methyl-d(+)-glucoside (α-Me-GLU), methyl-α-d-xylopyranoside (Me-α-XYL), and methyl-β-d-xylopyranoside (Me-β-XYL) in water and in (0.5, 1.0, 2.0, and 3.0) mol · kg?1 aqueous solutions of potassium chloride (KCl) have been determined at T = (288.15, 298.15, 308.15, and 318.15) K from efflux time measurements by using a capillary viscometer. Densities used to determine viscosities have been reported earlier. The viscosity data have been utilized to determine the viscosity B-coefficients employing the Jones–Dole equation at different temperatures. From these data, the viscosity B-coefficients of transfer, ΔtB have been estimated for the transfer of various saccharides/methylglycosides from water to aqueous potassium chloride solutions. The ΔtB values have been found to be positive, whose magnitude increases with the increase in concentration of potassium chloride in all cases. The dB/dT coefficients, pair, ηAB and triplet, ηABB viscometric interaction coefficients have also been determined. Gibbs free energies of activation and related thermodynamic parameters of activation of viscous flow have been determined employing Feakin’s transition-state theory. The signs and magnitudes of various parameters have been discussed in terms of solute–solute and solute–solvent interactions occurring in these solutions. The effect of substitution of –OH by methoxy group, –OCH3 has also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号