首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resistance to accelerated photo-oxidation of polyethylene/multi-walled carbon nanotubes (MW-CNTs) composite films was compared with the photo-oxidation behaviour of pristine polyethylene film. The polyethylene/MW-CNTs films containing different CNTs loading were subjected to accelerated UV-B exposure. At short exposure time, i.e. under 200 h, the rates of carbonyl formation are very similar to that observed for pristine polyethylene film but at longer irradiation times the carbonyl formation increases for lower MW-CNTs contents (0.1, 0.2 and 0.5% wt./wt.), and decreases for higher MW-CNTs contents (1 and 2% wt./wt.). By adding a UV-stabilizer to the films their photo-oxidation rates are drastically decreased also at low MW-CNTs concentration. Addition of a metal deactivator (MD) produced no observable effect.  相似文献   

2.
Mechanically robust, hollow carbon nanotube composite spheres that are permeable to large chemical species were prepared by a layer-by-layer assembly and templating technique.  相似文献   

3.
A multi-wall carbon nanotube (MWNT) film-modified electrode is described for the determination of malachite green (MG). The electrochemical profile of MG was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), suggesting that the MWNT film facilitates the electron transfer of MG in terms of a potential shift and then significantly enhances the oxidation peak current of MG. The experimental parameters, such as supporting electrolyte, thickness of MWNT film, scan rate and accumulation time, were optimized. Consequently, a sensitive and convenient electrochemical method is proposed for the determination of MG. The oxidation peak current is proportional to the concentration of MG over the range from 5.0 × 10−8 to 8.0 × 10−6 mol L−1 obeying the following equation: ip = 0.09 + 1.19 × 107 C (r = 0.995, ip in μA, C in mol L−1). The detection limit is 6.0 × 10−9 mol L−1 (signal to noise = 3) after 5 min of accumulation. Moreover, this method possesses good reproducibility (RSD is 5.6%, n = 8) as well as long-term stability. Finally, the new method was employed to determine MG in fish samples. Correspondence: W. Huang, Department of Chemistry, Hubei Institute for Nationalities, Enshi 445000, P.R. China  相似文献   

4.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

5.
The voltammetric behaviour and amperometric detection of tetracycline (TC) antibiotics at multi-wall carbon nanotube modified glassy carbon electrodes (MWCNT-GCE) are reported. Cyclic voltammograms of TCs showed enhanced oxidation responses at the MWCNT-GCE with respect to the bare GCE, attributable to the increased active electrode surface area. Hydrodynamic voltammograms obtained by flow-injection with amperometric detection at the MWCNT-GCE led us to select a potential value E det = +1.20 V. The repeatability of the amperometric responses was much better than that achieved with bare GCE (RSD ranged from 7 to 12%), with RSD values for i p of around 3%, thus demonstrating the antifouling capability of MWCNT modified electrodes. An HPLC method with amperometric electrochemical detection (ED) at the MWCNT-GCE was developed for tetracycline, oxytetracycline (OTC), chlortetracycline and doxycycline (DC). A mobile phase consisting of 18:82 acetonitrile/0.05 mol L−1 phosphate buffer of pH 2.5 was selected. The limits of detection ranged from 0.09 μmol L−1 for OTC to 0.44 μmol L−1 for DC. The possibility to carry out multiresidue analysis is demonstrated. The HPLC-ED/MWCNT-GCE method was applied to the analysis of fish farm pool water and underground well water samples spiked with the four TCs at 2.0 × 10−7 mol L−1. Solid-phase extraction was accomplished for the preconcentration of the analytes and clean-up of the samples. Recoveries ranged from 87 ± 6 to 99 ± 3%. Under preconcentration conditions, limits of detection in the water samples were between 0.50 and 3.10 ng mL−1.  相似文献   

6.
Li Zheng  Junfeng Song   《Talanta》2007,73(5):943-947
The voltammetric behavior of urapidil was investigated. In pH 6.8 Britton-Robinson buffer, an irreversible oxidation peak of urapidil at 0.62 V (versus SCE) at a multi-wall carbon nanotube paste electrode (MWNT-PE) was observed, which was more sensitive with lower potential than that at the carbon paste electrode (CPE). The oxidation of urapidil was a two-electron and two-proton process with adsorption character. A differential pulse voltammetric method was proposed for the determination of urapidil. The peak current of the oxidation peak of urapidil was linearly with its concentration in a range from 5.0 × 10−8 to 2.0 × 10−6 mol/L at open-circuit accumulation for 60 s, with a detection limit of 3.8 × 10−8 mol/L. The proposed method was employed to determine urapidil in urapidil tablets.  相似文献   

7.
运用循环伏安法与线性扫描伏安法研究了阿奇霉素在多壁碳纳米管修饰玻碳电极上的电化学行为,建立了一种直接测定阿奇霉素的电化学分析方法。结果表明,与裸玻碳电极相比,多壁碳纳米管修饰电极能显著提高阿奇霉素的氧化峰电流,阿奇霉素的电极过程完全不可逆,存在典型的吸附特性。在优化的实验条件下,氧化峰电流与阿奇霉素浓度在3.0×10-7~2.5×10-5 mol/L和2.5×10-5~5.0×10-4 mol/L范围内呈现良好的线性关系,检出限为1.0×10-7 mol/L。  相似文献   

8.
Electrooxidation of alcohols including methanol, ethanol, and isopropanol is studied on the modified solid glassy carbon electrodes with various amounts of platinum nanoparticles (PtNPs) immobilized on a composite of functionalized multi-walled carbon nanotubes (MWCNTs) and chitosan in an acidic solution. Here the chitosan is available as a binder to tightly anchor Pt nanoparticles onto the MWCNTs surfaces. MWCNTs/chitosan composite support can significantly improve the activity of the catalyst for alcohol oxidation and reduce the Pt catalyst loading. The calculated electrochemical active surface area is 379.2 m2/g Pt for PtNP–MWCNT/chitosan. Cyclic voltammetry and chronoamperometry techniques are employed for catalytic activity evaluation. The effects of operational parameters including platinum loading, concentration of the corresponding alcohol, concentration of the acid solution, scanning rate, and the final limit of anodic potential on the performance of the electrodes are also investigated.  相似文献   

9.
10.
In the present study, the MWNT/epoxy composites are prepared with three weight percentages (0.0, 0.3, and 0.5%) of multiwall carbon nanotube (MWNT). The temporal response of multi-wall carbon nanotube (MWNT)/epoxy composite with different wt% of multi-wall carbon nanotube (MWNT) is measured by experiment. Also, a cavity-type measuring system is designed to experimentally measure the surface temperatures and obtain the thermal conductivity of these composites at different heating rates. It is found that the responses of the 0.3 and 0.5% weight percentage of multi-wall carbon nanotube (MWNT)/epoxy composites are found to be about 25 and 47.8%, respectively, faster than that of the pure epoxy resin. Both the responding characteristics and the variation trends of the measured surface temperatures of these composites can be well predicted by the lumped-heat capacity model. Besides, the higher the weight percentage (wt%) of multi-wall carbon nanotube (MWNT) in the composite, the larger is the thermal conductivity. Relative to the pure epoxy, the thermal conductivities for the composites with 0.3 and 0.5% of multi-wall carbon nanotube (MWNT) increase by 15.9 and 44.9%, respectively. For the weight percentages studied, the thermal conductivity of these composites is found to increase mildly at low heating rates; however, it remains nearly constant at high heating rates.  相似文献   

11.
Li Zheng  Jun-feng Song 《Talanta》2009,79(2):319-128
A modified electrode Ni(II)-BA-MWCNT-PE has been fabricated by electrodepositing nickel(II)-baicalein [Ni(II)-BA] complex on the surface of multi-wall carbon nanotube paste electrode (MWCNT-PE) in alkaline solution. The Ni(II)-BA-MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-BA-CPE. It also shows good electrocatalytic activity toward the oxidation of hydrazine. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction, the diffusion coefficient D of hydrazine and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic currents present linear dependence on the concentration of hydrazine from 2.5 μM to 0.2 mM by amperometry. The detection limit and sensitivity are 0.8 μM and 69.9 μA mM−1, respectively. The modified electrode for hydrazine determination is of the property of simple preparation, good stability, fast response and high sensitivity.  相似文献   

12.
运用循环伏安法及线性扫描伏安法研究了间苯二胺在金纳米粒子/碳纳米管修饰玻碳电极上的电化学行为,优化并建立了一种直接测定间苯二胺的电化学分析方法。结果表明,与裸玻碳电极相比,金纳米粒子/碳纳米管修饰电极能显著提高间苯二胺的氧化峰电流。在优化条件下,氧化峰电流与间苯二胺浓度在3.0×10-8~1.0×10-6mol/L范围内呈现良好的线性关系,检出限为1.0×10-8mol/L,对1.0×10-7mol/L的间苯二胺溶液平行测定10次的RSD为4.2%。测定了实验室废水中的间苯二胺含量,3次测定结果的平均回收率为99.7%,RSD为2.1%。  相似文献   

13.
Hydroxyl functional poly(amidoamine) dendron wedges have been reacted with the surface of multi-walled carbon nanotubes and used for templating silver nanoparticles.  相似文献   

14.
研究了聚磺基水杨酸/多壁碳纳米管修饰玻碳电极的制备及多巴胺在此修饰电极上的电化学行为, 讨论了修饰条件、扫速、溶液 pH 以及抗坏血酸的干扰对多巴胺在这种复合物电极上响应的影响. 在 pH 7.4 磷酸盐缓冲溶液中, 在1.0×10-3 mol/L 抗坏血酸共存的条件下, 多巴胺氧化峰电流与其浓度在 5×10-7~10-4 mol/L 范围内分段呈线性关系, 检出限为 1.0×10-7 mol/L. 结果表明: 聚磺基水杨酸/多壁碳纳米管修饰电极结合了多壁碳纳米管灵敏度高和聚磺基水杨酸选择性好的优点, 可用于抗坏血酸共存条件下多巴胺的测定.  相似文献   

15.
Gu F  Li C  Wang S 《Inorganic chemistry》2007,46(13):5343-5348
A facile solution-chemical method has been developed to be capable of encapsulating a multiwalled carbon nanotube (MWCNT) with ZnS nanocrystals without using any bridging species. The thickness of the ZnS shell can be tuned easily by controlling the experimental conditions. The optical properties of the MWCNT/ZnS heterostructures were investigated using UV-vis absorption and photoluminescence spectroscopy. The optical absorption spectrum indicates that the band gap of ZnS nanocrystallites is 4.2 eV. On the basis of the photoluminescence spectrum, charge transfer is thought to proceed from ZnS nanocrystals to the nanotube in the ZnS-carbon nanotube system. These special heterostructures are very easily encapsulated within a uniform silica layer by a modified-St?ber process and still show better stability even after heat treatment at 400 degrees C, which makes them appealing for practical applications in biochemistry and biodiagnostics.  相似文献   

16.
Spray coated multi-wall carbon nanotube (CNT) film on fluorine-doped tin oxide glass substrate has been investigated as a counter electrode for tri-iodide reduction in dye-sensitized solar cells. The photovoltaic parameters, in particular, the fill factor shows a strong dependency on the spraying time of multi-wall CNTs. Under one sun illumination (100 mW cm−2, AM 1.5 G), the device shows a maximum energy conversion efficiency of 7.59%. Electrochemical impedance spectroscopy analysis reveals a decrease in the charge transfer resistance of multi-wall CNT counter electrode with increase of spraying time; leads to an improvement in the photovoltaic parameters.  相似文献   

17.
Wei Zhao  Xia Qin  Zixia Zhao  Lili Chen  Yuxin Fang 《Talanta》2009,80(2):1029-943
A novel strategy to fabricate hydrogen peroxide (H2O2) sensor was developed based on multi-wall carbon nanotube/silver nanoparticle nanohybrids (MWCNT/Ag nanohybrids) modified gold electrode. The process to synthesize MWCNT/Ag nanohybrids was facile and efficient. In the presence of carboxyl groups functionalized multi-wall carbon nanotubes (MWCNTs), silver nanoparticles (Ag NPs) were in situ generated from AgNO3 aqueous solution and readily attached to the MWCNTs convex surfaces at room temperature, without any additional reducing reagent or irradiation treatment. The formation of MWCNT/Ag nanohybrids product was observed by transmission electron microscope (TEM), and the electrochemical properties of MWCNT/Ag nanohybrids modified gold electrode were characterized by electrochemical measurements. The results showed that this sensor had a favorable catalytic ability for the reduction of H2O2. The resulted sensor could detect H2O2 in a linear range of 0.05-17 mM with a detection limit of 5 × 10−7 M at a signal-to-noise ratio of 3. The sensitivity was calculated as 1.42 μA/mM at a potential of −0.2 V. Additionally, it exhibited good reproducibility, long-term stability and negligible interference of ascorbic acid (AA), uric acid (UA), and acetaminophen (AP).  相似文献   

18.
A heated composite electrode consisted of multi-wall carbon nanotube (MWNT) and ionic liquids (ILs) was designed and fabricated. The non-conductive binders were replaced by a conductive IL, n-octylpyridinum hexafluorophosphate (OPFP). This heated OPFP/MWNT composite electrode was applied for electrochemiluminescent (ECL) sensor, and the performance of ECL sensor was evaluated by ascorbic acid (AA)/lucigenin ECL system. The new heated electrode combines the advantages of ILs/CNT and heated electrode, showing high thermal stability and conductivity, simple heating setups, improved reproducibility, renewable surface, simplicity of fabrication and enhanced sensitivity with detection limit (S/N = 3) of 0.01 μmol/L for AA.  相似文献   

19.
Triblock copolymer of poly(p-dioxanone) and polyethylene glycol end-capped with pyrene moieties ((Py-PPDO)2-b-PEG) was synthesized and used as modifier for multi-wall carbon nanotubes (MWCNTs). Nano-aggregates ((Py-PPDO)2-b-PEG@MWCNTs) with shish-kebab like partially wrapped morphology and very good stability were obtained by incorporating the copolymer with MWCNTs. The bare MWCNT sections of (Py-PPDO)2-b-PEG@MWCNTs were able to induce π-π interactions with graphene (GE) and resulted in a novel GE/(Py-PPDO)2-b-PEG@MWCNTs hybrid. The dispersity of GE in solution or polymer matrix was therefore greatly improved. The PCL nanocomposite films using GE/(Py-PPDO)2-bPEG@MWCNTs as hybrid nanofiller exhibited obviously improved mechanical properties especially at very low hybrid nanofiller content. The influence of the nanofiller content and feed ratio of GE/MWCNTs on the mechanical properties of composites films was evaluated. When the feed ratio of GE to MWCNTs is 2:8 and the total loading of nanofiller is only 0.01 wt%, the tensile strength of the composite film increased by 163% and the elongation at break increased by 17% compared to those of neat PCL. These results can be attributed to fine dispersion of the nanofillers in PCL matrix and the hybrid interactions between GE and MWCNTs. Therefore, this work provides a novel method for preparing polymer nanocomposites with high mechanical performance and low nanofiller loading.  相似文献   

20.
结合纳米材料的电催化特性和中性红聚合物薄膜的分子识别能力, 以玻碳电极为基体制备了多壁碳管/聚中性红(MWNT/PNR)修饰电极, 并用表面扫描电镜和循环伏安法进行了表征. 实验表明, 该修饰电极对腺嘌呤(A)和鸟嘌呤(G)都表现出了良好的电催化性能. 在最佳条件下, 用示差脉冲伏安法对A和G进行了测定, 其氧化峰电流于A和G的浓度分别在0.01~4 μmol/L和0.01~8 μmol/L范围内呈良好的线性关系, 检测限均为5×10-9 mol/L (S/N=3). 该修饰电极可以用来同时测定DNA中的A和G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号