首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given ${\Omega\subset\mathbb{R}^{n}}$ open, connected and with Lipschitz boundary, and ${s\in (0, 1)}$ , we consider the functional $$\mathcal{J}_s(E,\Omega)\,=\, \int_{E\cap \Omega}\int_{E^c\cap\Omega}\frac{dxdy}{|x-y|^{n+s}}+\int_{E\cap \Omega}\int_{E^c\cap \Omega^c}\frac{dxdy}{|x-y|^{n+s}}\,+ \int_{E\cap \Omega^c}\int_{E^c\cap \Omega}\frac{dxdy}{|x-y|^{n+s}},$$ where ${E\subset\mathbb{R}^{n}}$ is an arbitrary measurable set. We prove that the functionals ${(1-s)\mathcal{J}_s(\cdot, \Omega)}$ are equi-coercive in ${L^1_{\rm loc}(\Omega)}$ as ${s\uparrow 1}$ and that $$\Gamma-\lim_{s\uparrow 1}(1-s)\mathcal{J}_s(E,\Omega)=\omega_{n-1}P(E,\Omega),\quad \text{for every }E\subset\mathbb{R}^{n}\,{\rm measurable}$$ where P(E, ??) denotes the perimeter of E in ?? in the sense of De Giorgi. We also prove that as ${s\uparrow 1}$ limit points of local minimizers of ${(1-s)\mathcal{J}_s(\cdot,\Omega)}$ are local minimizers of P(·, ??).  相似文献   

2.
We introduce vanishing generalized Morrey spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\Omega), \Omega \subseteq \mathbb{R}^n}$ with a general function ${\varphi(x, r)}$ defining the Morrey-type norm. Here ${\Pi \subseteq \Omega}$ is an arbitrary subset in Ω including the extremal cases ${\Pi = \{x_0\}, x_0 \in \Omega}$ and Π = Ω, which allows to unify vanishing local and global Morrey spaces. In the spaces ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n)}$ we prove the boundedness of a class of sublinear singular operators, which includes Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel. We also prove a Sobolev-Spanne type ${V\mathcal{L}^{p,\varphi}_\Pi (\mathbb{R}^n) \rightarrow V\mathcal{L}^{q,\varphi^\frac{q}{p}}_\Pi (\mathbb{R}^n)}$ -theorem for the potential operator I α . The conditions for the boundedness are given in terms of Zygmund-type integral inequalities on ${\varphi(x, r)}$ . No monotonicity type condition is imposed on ${\varphi(x, r)}$ . In case ${\varphi}$ has quasi- monotone properties, as a consequence of the main results, the conditions of the boundedness are also given in terms of the Matuszeska-Orlicz indices of the function ${\varphi}$ . The proofs are based on pointwise estimates of the modulars defining the vanishing spaces  相似文献   

3.
4.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

5.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

6.
We prove that for any open Riemann surface ${\mathcal{N}}$ , natural number N ≥ 3, non-constant harmonic map ${h:\mathcal{N} \to \mathbb{R}}$ N?2 and holomorphic 2-form ${\mathfrak{H}}$ on ${\mathcal{N}}$ , there exists a weakly complete harmonic map ${X=(X_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ with Hopf differential ${\mathfrak{H}}$ and ${(X_j)_{j=3,\ldots,{\sc N}}=h.}$ In particular, there exists a complete conformal minimal immersion ${Y=(Y_j)_{j=1,\ldots,{\sc N}}:\mathcal{N} \to \mathbb{R}^{\sc N}}$ such that ${(Y_j)_{j=3,\ldots,{\sc N}}=h}$ . As some consequences of these results (1) there exist complete full non-decomposable minimal surfaces with arbitrary conformal structure and whose generalized Gauss map is non-degenerate and fails to intersect N hyperplanes of ${\mathbb{CP}^{{\sc N}-1}}$ in general position. (2) There exist complete non-proper embedded minimal surfaces in ${\mathbb{R}^{\sc N},}$ ${\forall\,{\sc N} >3 .}$   相似文献   

7.
Given a eigenvalue $\mu _{0m}^2$ of $-\Delta $ in the unit ball $B_1$ , with Neumann boundary conditions, we prove that there exists a class $\mathcal{D}$ of $C^{0,1}$ -domains, depending on $\mu _{0m} $ , such that if $u$ is a no trivial solution to the following problem $ \Delta u+\mu u=0$ in $\Omega , u=0$ on $\partial \Omega $ , and $ \int \nolimits _{\partial \Omega }\partial _{\mathbf{n}}u=0$ , with $\Omega \in \mathcal{D}$ , and $\mu =\mu _{0m}^2+o(1)$ , then $\Omega $ is a ball. Here $\mu $ is a eigenvalue of $-\Delta $ in $\Omega $ , with Neumann boundary conditions.  相似文献   

8.
9.
Let $k$ and $j$ be positive integers. We prove that the action of the two-dimensional singular integral operators $(S_\Omega )^{j-1}$ and $(S_\Omega ^*)^{j-1}$ on a Hilbert base for the Bergman space $\mathcal{A }^2(\Omega )$ and anti-Bergman space $\mathcal{A }^2_{-1}(\Omega ),$ respectively, gives Hilbert bases $\{ \psi _{\pm j , k } \}_{ k }$ for the true poly-Bergman spaces $\mathcal{A }_{(\pm j)}^2(\Omega ),$ where $S_\Omega $ denotes the compression of the Beurling transform to the Lebesgue space $L^2(\Omega , dA).$ The functions $\psi _{\pm j,k}$ will be explicitly represented in terms of the $(2,1)$ -hypergeometric polynomials as well as by formulas of Rodrigues type. We prove explicit representations for the true poly-Bergman kernels and more transparent representations for the poly-Bergman kernels of $\Omega $ . We establish Rodrigues type formulas for the poly-Bergman kernels of $\mathbb{D }$ .  相似文献   

10.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

11.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

12.
We study the sets $\mathcal{T}_{v}=\{m \in\{1,2,\ldots\}: \mbox{there is a convex polygon in }\mathbb{R}^{2}\mbox{ that has }v\mbox{ vertices and can be tiled with $m$ congruent equilateral triangles}\}$ , v=3,4,5,6. $\mathcal{T}_{3}$ , $\mathcal{T}_{4}$ , and $\mathcal{T}_{6}$ can be quoted completely. The complement $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ of $\mathcal{T}_{5}$ turns out to be a subset of Euler’s numeri idonei. As a consequence, $\{1,2,\ldots\} \setminus\mathcal{T}_{5}$ can be characterized with up to two exceptions, and a complete characterization is given under the assumption of the Generalized Riemann Hypothesis.  相似文献   

13.
The purpose of this paper is to bring a new light on the state-dependent Hamilton–Jacobi equation and its connection with the Hopf–Lax formula in the framework of a Carnot group $(\mathbf G ,\circ ).$ The equation we shall consider is of the form $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} u_{t}+ \Psi (X_{1}u, \ldots , X_{m}u)=0\qquad &{}(x,t)\in \mathbf G \times (0,\infty ) \\ {u}(x,0)=g(x)&{}x\in \mathbf G , \end{array} \right. \end{aligned}$$ where $X_{1},\ldots , X_{m}$ are a basis of the first layer of the Lie algebra of the group $\mathbf G ,$ and $\Psi : \mathbb{R }^{m} \rightarrow \mathbb{R }$ is a superlinear, convex function. The main result shows that the unique viscosity solution of the Hamilton–Jacobi equation can be given by the Hopf–Lax formula $$\begin{aligned} u(x,t) = \inf _{y\in \mathbf G }\left\{ t \Psi ^\mathbf{G }\left( \delta _{\frac{1}{t}}(y^{-1}\circ x)\right) + g(y) \right\} , \end{aligned}$$ where $\Psi ^\mathbf{G }:\mathbf G \rightarrow \mathbb{R }$ is the $\mathbf G $ -Legendre–Fenchel transform of $\Psi ,$ defined by a control theoretical approach. We recover, as special cases, some known results like the classical Hopf–Lax formula in the Euclidean spaces $\mathbb{R }^n,$ showing that $\Psi ^{\mathbb{R }^n}$ is the Legendre–Fenchel transform $\Psi ^*$ of $\Psi ;$ moreover, we recover the result by Manfredi and Stroffolini in the Heisenberg group for particular Hamiltonian function $\Psi .$ In this paper we follow an optimal control problem approach and we obtain several properties for the value functions $u$ and $\Psi ^\mathbf G .$   相似文献   

14.
Consider a finite dimensional complex Hilbert space ${\mathcal{H}}$ , with ${dim(\mathcal{H}) \geq 3}$ , define ${\mathbb{S}(\mathcal{H}):= \{x\in \mathcal{H} \:|\: \|x\|=1\}}$ , and let ${\nu_\mathcal{H}}$ be the unique regular Borel positive measure invariant under the action of the unitary operators in ${\mathcal{H}}$ , with ${\nu_\mathcal{H}(\mathbb{S}(\mathcal{H}))=1}$ . We prove that if a complex frame function ${f : \mathbb{S}(\mathcal{H})\to \mathbb{C}}$ satisfies ${f \in \mathbb{L}^2(\mathbb{S}(\mathcal{H}), \nu_\mathcal{H})}$ , then it verifies Gleason’s statement: there is a unique linear operator ${A: \mathcal{H} \to \mathcal{H}}$ such that ${f(u) = \langle u| A u\rangle}$ for every ${u \in \mathbb{S}(\mathcal{H}).\,A}$ is Hermitean when f is real. No boundedness requirement is thus assumed on f a priori.  相似文献   

15.
This work starts with the introduction of a family of differential energy operators. Energy operators $({\varPsi}_{R}^{+}, {\varPsi}_{R}^{-})$ were defined together with a method to decompose the wave equation in a previous work. Here the energy operators are defined following the order of their derivatives $(\varPsi^{-}_{k}, \varPsi^{+}_{k}, k=\{0,\pm 1,\pm 2,\ldots\})$ . The main part of the work demonstrates for any smooth real-valued function f in the Schwartz space $(\mathbf{S}^{-}(\mathbb{R}))$ , the successive derivatives of the n-th power of f ( $n \in \mathbb{Z}$ and n≠0) can be decomposed using only $\varPsi^{+}_{k}$ (Lemma); or if f in a subset of $\mathbf{S}^{-}(\mathbb{R})$ , called $\mathbf{s}^{-}(\mathbb{R})$ , $\varPsi^{+}_{k}$ and $\varPsi^{-}_{k}$ ( $k\in \mathbb{Z}$ ) decompose in a unique way the successive derivatives of the n-th power of f (Theorem). Some properties of the Kernel and the Image of the energy operators are given along with the development. Finally, the paper ends with the application to the energy function.  相似文献   

16.
We consider weak solutions ${u \in u_0 + W^{1,2}_0(\Omega,\mathbb{R}^N) \cap L^{\infty}(\Omega,\mathbb{R}^N)}$ of second-order nonlinear elliptic systems of the type $$- {\rm div} \,a (\, \cdot \,, u, Du ) = b(\, \cdot \,,u,Du)\qquad \text{ in }\Omega$$ with an inhomogeneity satisfying a natural growth condition. In dimensions ${n \in \{2,3,4\}}$ , we show that ${\mathcal{H}^{n-1}}$ -almost every boundary point is a regular point for Du, provided that the boundary data and the coefficients are sufficiently smooth.  相似文献   

17.
We study the geometry and dynamics of discrete subgroups $\Gamma $ of $\mathrm{PSL}(3,\mathbb C )$ with an open invariant set $\Omega \subset \mathbb P _\mathbb{C }^2$ where the action is properly discontinuous and the quotient $\Omega /\Gamma $ contains a connected component whicis compact. We call such groups quasi-cocompact. In this case $\Omega /\Gamma $ is a compact complex projective orbifold and $\Omega $ is a divisible set. Our first theorem refines classical work by Kobayashi–Ochiai and others about complex surfaces with a projective structure: We prove that every such group is either virtually affine or complex hyperbolic. We then classify the divisible sets that appear in this way, the corresponding quasi-cocompact groups and the orbifolds $\Omega /\Gamma $ . We also prove that excluding a few exceptional cases, the Kulkarni region of discontinuity coincides with the equicontinuity region and is the largest open invariant set where the action is properly discontinuous.  相似文献   

18.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

19.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

20.
Let $\mathcal{O }$ be an orbit of the group of Hamiltonian symplectomorphisms acting on the space of Lagrangian submanifolds of a symplectic manifold $(X,\omega ).$ We define a functional $\mathcal{C }:\mathcal{O } \rightarrow \mathbb{R }$ for each differential form $\beta $ of middle degree satisfying $\beta \wedge \omega = 0$ and an exactness condition. If the exactness condition does not hold, $\mathcal{C }$ is defined on the universal cover of $\mathcal{O }.$ A particular instance of $\mathcal{C }$ recovers the Calabi homomorphism. If $\beta $ is the imaginary part of a holomorphic volume form, the critical points of $\mathcal{C }$ are special Lagrangian submanifolds. We present evidence that $\mathcal{C }$ is related by mirror symmetry to a functional introduced by Donaldson to study Einstein–Hermitian metrics on holomorphic vector bundles. In particular, we show that $\mathcal{C }$ is convex on an open subspace $\mathcal{O }^+ \subset \mathcal{O }.$ As a prerequisite, we define a Riemannian metric on $\mathcal{O }^+$ and analyze its geodesics. Finally, we discuss a generalization of the flux homomorphism to the space of Lagrangian submanifolds, and a Lagrangian analog of the flux conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号