首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Biological dosimetry is an essential tool for estimating radiation doses received to personnel when physical dosimetry is not available or inadequate. The current preferred biodosimetry method is based on the measurement of radiation-specific dicentric chromosomes in exposed individuals' peripheral blood lymphocytes. However, this method is labour-, time- and expertise-demanding. Consequently, for mass casualty applications, strategies have been developed to increase its throughput. One such strategy is to develop validated cytogenetic biodosimetry laboratory networks, both national and international. In a previous study, the dicentric chromosome assay (DCA) was validated in our cytogenetic biodosimetry network involving five geographically dispersed laboratories. A complementary strategy to further enhance the throughput of the DCA among inter-laboratory networks is to use a triage DCA where dose assessments are made by truncating the labour-demanding and time-consuming metaphase-spread analysis to 20 to 50 metaphase spreads instead of routine 500 to 1000 metaphase spread analysis. Our laboratory network also validated this triage DCA, however, these dose estimates were made using calibration curves generated in each laboratory from the blood samples irradiated in a single laboratory. In an emergency situation, dose estimates made using pre-existing calibration curves which may vary according to radiation type and dose rate and therefore influence the assessed dose. Here, we analyze the effect of using a pre-existing calibration curve on assessed dose among our network laboratories. The dose estimates were made by analyzing 1000 metaphase spreads as well as triage quality scoring and compared to actual physical doses applied to the samples for validation. The dose estimates in the laboratory partners were in good agreement with the applied physical doses and determined to be adequate for guidance in the treatment of acute radiation syndrome.  相似文献   

2.
《Radiation measurements》2007,42(6-7):972-996
In the aftermath of a radiological terrorism incident or mass-casualty radiation accident, first responders and receivers require prior guidance and pre-positioned resources for assessment, triage and medical management of affected individuals [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA]. Several recent articles [Dainiak, N., Waselenko, J.K., Armitage, J.O., MacVittie, T.J., Farese, A.M., 2003. The hematologist and radiation casualties. Hematology (Am. Soc. Hematol. Educ. Program) 473–496; Waselenko, J.K., MacVittie, T.J., Blakely, W.F., Pesik, N., Wiley, A.L., Dickerson, W.E., Tsu, H., Confer, D.L., Coleman, C.N., Seed, T., Lowry, P., Armitage, J.O., Dainiak, N., Strategic National Stockpile Radiation Working Group, 2004. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140(12), 1037–1051; Blakely, W.F., Salter, C.A., Prasanna, P.G., 2005. Early-response biological dosimetry—recommended countermeasure enhancements for mass-casualty radiological incidents and terrorism. Health Phys. 89(5), 494–504; Goans, R.E., Waselenko, J.K., 2005. Medical management of radiation casualties. Health Phys. 89(5), 505–512; Swartz, H.M., Iwasaki, A., Walczak, T., Demidenko, E., Salikhov, I., Lesniewski, P., Starewicz, P., Schauer, D., Romanyukha, A., 2005. Measurements of clinically significant doses of ionizing radiation using non-invasive in vivo EPR spectroscopy of teeth in situ. Appl. Radiat. Isot. 62, 293–299; Weisdorf, D., Chao, N., Waselenko, J.K., Dainiak, N., Armitage, J.O., McNiece, I., Confer, D., 2006. Acute radiation injury: contingency planning for triage, supportive care, and transplantation. Biol. Blood Marrow Transplant. 12(6), 672–682], national [National Council of Radiation Protection and Measurements (NCRP), 1994. Management of persons accidentally contaminated with radionuclides. NCRP Report No. 65, Bethesda, Maryland, USA; NCRP, 2001. Management of terrorist events involving radioactive material. NCRP Report No. 138, Bethesda, Maryland, USA; NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA] and international [IAEA, 2005. Generic procedures for medical response during a nuclear or radiological emergency. EPR-Medical 2005, IAEA, Vienna, Austria] agencies have reviewed strategies for acute-phase biodosimetry. Consensus biodosimetric guidelines include: (a) clinical signs and symptoms, including peripheral blood counts, time to onset of nausea and vomiting and presence of impaired cognition and neurological deficits, (b) radioactivity assessment, (c) personal and area dosimetry, (d) cytogenetics, (e) in vivo electron paramagnetic resonance (EPR) and (f) other dosimetry approaches (i.e. blood protein assays, etc.). Emerging biodosimetric technologies may further refine triage and dose assessment strategies. However, guidance is needed regarding which biodosimetry techniques are most useful for different radiological scenarios and consensus protocols must be developed.The Local Organizing Committee for the Second International Conference on Biodosimetry and Seventh International Symposium on EPR Dosimetry and Applications (BiodosEPR-2006 Meeting) convened an Acute Dosimetry Consensus Committee composed of national and international experts to: (a) review the current literature for biodosimetry applications for acute-phase applications in radiological emergencies, (b) describe the strengths and weaknesses of each technique, (c) provide recommendations for the use of biodosimetry assays for selected defined radiation scenarios, and (d) develop protocols to apply these recommended biological dosimetry techniques with currently available supplies and equipment for first responders.The Acute Dosimetry Consensus Committee developed recommendations for use of a prioritized multiple-assay biodosimetric-based strategy, concluding that no single assay is sufficiently robust to address all of the potential radiation scenarios including management of mass casualties and diagnosis for early medical treatment. These recommendations may be used by first responders/first receivers that span time-windows of (i.e. 0–5 days) after the radiological incident for three radiological scenarios including: (a) radiation exposure device (RED), (b) radiological dispersal device (RDD), and (c) an improvised (or otherwise acquired) nuclear device (IND). Consensus protocols for various bioassays (i.e. signs and symptoms recording, bioassay sampling for radioactivity analysis, nail-clipping sampling for EPR analysis and blood collection for hematology, cytogenetics, and blood chemistry analyses) are presented as Appendix materials. As stated in NCRP Commentary No. 19 [NCRP, 2005. Key elements of preparing emergency responders for nuclear and radiological terrorism. NCRP Commentary No. 19, Bethesda, Maryland, USA], multi-parameter triage (i.e. time to vomiting, lymphocyte kinetics, and other biodosimetry indicators) offers the current best strategy for early assessment of absorbed dose.  相似文献   

3.
Existing data on intercomparisons involving biodosimetry or physical dosimetry methods are analyzed and the results interpreted regarding their efficacy in triage in emergency dosimetry following mass casualty radiological events. The biodosimetry technique examined is dicentric chromosome aberrations (DCA). The physical dosimetry techniques include electron paramagnetic resonance (EPR) of biological material (teeth) and physical material (smartphone screen glass), and optically stimulated luminescence (OSL) of electronic components (surface mount resistors) from mobile phones. Issues relating to calibration and interpretation of the data are discussed. An important conclusion of the analysis is that more research is critically needed to interpret the efficacy of the various methods. Included in this needed research are intercomparisons of the various methods in controlled experiments and the need to harmonize protocols.  相似文献   

4.
5.
Starting with the assumption that a device to detect unplanned radiation exposures is technically superior to current technology, we examine the additional stakeholders and processes that must be considered to move the device from the lab into use. The use is to provide reliable information to triage people for early treatment of exposure to ionizing radiation that could lead to the Acute Radiation Syndrome. The scenario is a major accident or terrorist event that leaves a large number of people potentially exposed, with the resulting need to identify those to treat promptly or not. In vivo EPR dosimetry is the exemplar of such a technique.Three major areas are reviewed: policy considerations, regulatory clearance, and production of the device. Our analysis of policy-making indicates that the current system is very complex, with multiple significant decision-makers who may have conflicting agendas. Adoption of new technologies by policy-makers is further complicated because many sources of expert input already have made public stances or have reasons to prefer current solutions, e.g., some may have conflicts of interest in approving new devices because they are involved with the development or adoption of competing techniques. Regulatory clearance is complicated by not being able to collect evidence via clinical trials of its intended use, but pathways for approval for emergency use are under development by the FDA. The production of the new device could be problematical if the perceived market is too limited, particularly for private manufacturers; for in vivo EPR dosimetry the potential for other uses may be a mitigating factor.Overall we conclude that technical superiority of a technique does not in itself assure its rapid and effective adoption, even where the need is great and the alternatives are not satisfactory for large populations. Many important steps remain to achieve the goals of approval and adoption for use.  相似文献   

6.
《Radiation measurements》2007,42(6-7):1256-1260
This paper briefly reviews the optically stimulated luminescence (OSL) properties of dental enamel and discusses the potential and challenges of OSL for filling the technology gap in biodosimetry required for medical triage following a radiological/nuclear accident or terrorist event. The OSL technique uses light to stimulate a radiation-induced luminescence signal from materials previously exposed to ionizing radiation. This luminescence originates from radiation-induced defects in insulating crystals and is proportional to the absorbed dose of ionizing radiation. In our research conducted to date, we focused on fundamental investigations of the OSL properties of dental enamel using extracted teeth and tabletop OSL readers. The objective was to obtain information to support the development of the necessary instrumentation for retrospective dosimetry using dental enamel in laboratory, or for in situ and non-invasive accident dosimetry using dental enamel in emergency triage. An OSL signal from human dental enamel was detected using blue, green, or IR stimulation. Blue/green stimulation associated with UV emission detection seems to be the most appropriate combination in the sense that there is no signal from un-irradiated samples and the shape of the OSL decay is clear. Improvements in the minimum detection level were achieved by incorporating an ellipsoidal mirror in the OSL system to maximize light collection. Other possibilities to improve the sensitivity and research steps necessary to establish the feasibility of the technique for retrospective assessment of radiation exposure are also discussed.  相似文献   

7.
8.
《Radiation measurements》2007,42(6-7):1133-1137
While biodosimetry is a valuable tool in radiation dose assessment, the dicentric assay, which is the most validated method to date, requires some degree of technical competence. Recently published ISO guidelines indicate the need for documenting competence and establishment of quality control programs. Inter-laboratory comparisons are required to document the ability to perform reproducible and accurate assessments. FOI and DRDC Ottawa have conducted an initial limited biodosimetry exercise inter-comparison for quality assurance purposes. The exercise involved blinded exchange of three previously prepared slides from each laboratory from samples that had been evaluated for each lab's dose–response curve. Approximately 100 cells from each slide were evaluated and aberration frequencies reported and compared to the expected frequencies. The limited number of cells evaluated for each sample could not permit statistically distinguishing a 20% difference in all the samples. However, the results indicated reasonable agreement in analyses for all samples for triage purposes. Comparison of aberration frequencies, rather than dose estimates, further illustrates consistent scoring criteria between the two laboratories. The exercise conducted by FOI and DRDC Ottawa provided an efficient means of documenting expertise. Such cooperation further establishes the international biodosimetry network and ensures our readiness for emergency response.  相似文献   

9.
10.
There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.  相似文献   

11.
We compare models of radiation transport and biological response to physical and biological dosimetry results from astronauts on the Mir space station. Transport models are shown to be in good agreement with physical measurements and indicate that the ratio of equivalent dose from the Galactic Cosmic Rays (GCR) to protons is about 3/2:1 and that this ratio will increase for exposures to internal organs. Two biological response models are used to compare to the Mir biodosimetry for chromosome aberration in lymphocyte cells; a track-structure model and the linear-quadratic model with linear energy transfer (LET) dependent weighting coefficients. These models are fit to in vitro data for aberration formation in human lymphocytes by photons and charged particles. Both models are found to be in reasonable agreement with data for aberrations in lymphocytes of Mir crew members: however there are differences between the use of LET dependent weighting factors and track structure models for assigning radiation quality factors. The major difference in the models is the increased effectiveness predicted by the track model for low charge and energy ions with LET near 10 keV/micrometers. The results of our calculations indicate that aluminum shielding, although providing important mitigation of the effects of trapped radiation, provides no protective effect from the galactic cosmic rays (GCR) in low-earth orbit (LEO) using either equivalent dose or the number of chromosome aberrations as a measure until about 100 g/cm 2 of material is used.  相似文献   

12.
This paper reviews recent research on the application of the physical dosimetry techniques of electron paramagnetic resonance (EPR) and luminescence (optically stimulated luminescence, OSL, and thermoluminescence, TL) to determine radiation dose following catastrophic, large-scale radiological events. Such data are used in dose reconstruction to obtain estimates of dose due to the exposure to external sources of radiation, primarily gamma radiation, by individual members of the public and by populations. The EPR and luminescence techniques have been applied to a wide range of radiological studies, including nuclear bomb detonation (e.g., Hiroshima and Nagasaki), nuclear power plant accidents (e.g., Chernobyl), radioactive pollution (e.g., Mayak plutonium facility), and in the future could include terrorist events involving the dispersal of radioactive materials. In this review we examine the application of these techniques in ‘emergency’ and ‘retrospective’ modes of operation that are conducted on two distinct timescales. For emergency dosimetry immediate action to evaluate dose to individuals following radiation exposure is required to assess deterministic biological effects and to enable rapid medical triage. Retrospective dosimetry, on the other hand, contributes to the reconstruction of doses to populations and individuals following external exposure, and contributes to the long-term study of stochastic processes and the consequential epidemiological effects. Although internal exposure, via ingestion of radionuclides for example, can be a potentially significant contributor to dose, this review is confined to those dose components arising from exposure to external radiation, which in most studies is gamma radiation.The nascent emergency dosimetry measurement techniques aim to perform direct dose evaluations for individuals who, as members of the public, are most unlikely to be carrying a dosimeter issued for radiation monitoring purposes in the event of a radiation incident. Hence attention has focused on biological or physical materials they may have in their possession that could be used as surrogate dosimeters. For EPR measurements, in particular, this includes material within the body (such as bone or tooth biopsy) requiring invasive procedures, but also materials collected non-invasively (such as clippings taken from finger- or toenails) and artefacts within their personal belongings (such as electronic devices of which smart phones are the most common). For luminescence measurements, attention has also focused on components within electronic devices, including smartphones, and a wide range of other personal belongings such as paper and other polymer-based materials (including currency, clothing, bank cards, etc.). The paper reviews progress made using both EPR and luminescence techniques, along with their current limitations.For the longer-established approach of retrospective dosimetry, luminescence has been the most extensively applied method and, by employing minerals found in construction materials, it consequently is employed in dosimetry using structures within the environment. Recent developments in its application to large-scale radiation releases are discussed, including the atomic bomb detonations at Hiroshima and Nagasaki, fallout from the Chernobyl reactor and atmospheric nuclear bomb tests within the Semipalatinsk Nuclear Test Site and fluvially transported pollution within the Techa River basin due to releases from the Mayak facility. The developments made in applying OSL and TL techniques are discussed in the context of these applications. EPR measurements with teeth have also provided benchmark values to test the dosimetry models used for Chernobyl liquidators (clean-up workers), residents of Semipalatinsk Nuclear Tests Sites and inhabitants of the Techa River basin.For both emergency and retrospective dosimetry applications, computational techniques employing radiation transport simulations based on Monte Carlo code form an essential component in the application of dose determinations by EPR and OSL to dose reconstruction problems. We include in the review examples where the translation from the physical quantity of cumulative dose determined in the sampled medium to a dose quantity that can be applied in the reconstruction of dose to individuals and/or populations; these take into account the source terms, release patterns and the movements of people in the affected areas. One role for retrospective luminescence dosimetry has been to provide benchmark dose determinations for testing the models employed in dose reconstruction for exposed populations, notably at Hiroshima and Nagasaki. The discussion is framed within the context of the well-known radiation incidents mentioned above.  相似文献   

13.
In order to meet the potential need for emergency large-scale retrospective radiation biodosimetry following an accident or attack, we have developed instrumentation and methodology for in vivo electron paramagnetic resonance spectroscopy to quantify concentrations of radiation-induced radicals within intact teeth. This technique has several very desirable characteristics for triage, including independence from confounding biologic factors, a non-invasive measurement procedure, the capability to make measurements at any time after the event, suitability for use by non-expert operators at the site of an event, and the ability to provide immediate estimates of individual doses. Throughout development there has been a particular focus on the need for a deployable system, including instrumental requirements for transport and field use, the need for high throughput, and use by minimally trained operators.Numerous measurements have been performed using this system in clinical and other non-laboratory settings, including in vivo measurements with unexposed populations as well as patients undergoing radiation therapies. The collection and analyses of sets of three serially-acquired spectra with independent placements of the resonator, in a data collection process lasting approximately five minutes, provides dose estimates with standard errors of prediction of approximately 1 Gy. As an example, measurements were performed on incisor teeth of subjects who had either received no irradiation or 2 Gy total body irradiation for prior bone marrow transplantation; this exercise provided a direct and challenging test of our capability to identify subjects who would be in need of acute medical care.  相似文献   

14.
There is now an increased need for accident dosimetry due to the increased risk of significant exposure to ionizing radiation from terrorism or accidents. In such scenarios, dose measurements should be made in individuals rapidly and with sufficient accuracy to enable effective triage. Electron paramagnetic resonance (EPR) is a physical method of high potential for meeting this need, providing direct measurements of the radiation-induced radicals, which are unambiguous signatures of exposure to ionizing radiation. For individual retrospective dosimetry, EPR in tooth enamel is a proven and effective technique when isolated teeth can be obtained. There are some promising developments that may make these measurements feasible without the need to remove the teeth, but their field applicability remains to be demonstrated. However, currently it is difficult under emergency conditions to obtain tooth enamel in sufficient amounts for accurate dose measurements. Since fingernails are much easier to sample, they can be used in potentially exposed populations to determine if they were exposed to life-threatening radiation doses. Unfortunately, only a few studies have been carried out on EPR radiation-induced signals in fingernails, and, while there are some promising aspects, the reported results were generally inconclusive. In this present paper, we report the results of a systematic investigation of the potential use of fingernails as retrospective radiation dosimeters.  相似文献   

15.
《Radiation measurements》2007,42(6-7):948-971
The requirements for biodosimetric techniques used at long times after exposure, i.e., 6 months to more than 50 years, are unique compared to the requirements for methods used for immediate dose estimation. In addition to the fundamental requirement that the assay measures a physical or biologic change that is proportional to the energy absorbed, the signal must be highly stable over time to enable reasonably precise determinations of the absorbed dose decades later. The primary uses of these biodosimetric methods have been to support long-term health risk (epidemiologic) studies or to support compensation (damage) claims. For these reasons, the methods must be capable of estimating individual doses, rather than group mean doses. Even when individual dose estimates can be obtained, inter-individual variability remains as one of the most difficult problems in using biodosimetry measurements to rigorously quantify individual exposures. Other important criteria for biodosimetry methods include obtaining samples with minimal invasiveness, low detection limits, and high precision. Cost and other practical limitations generally prohibit biodosimetry measurements on a large enough sample to replace analytical dose reconstruction in epidemiologic investigations. However, these measurements can be extremely valuable as a means to corroborate analytical or model-based dose estimates, to help reduce uncertainty in individual doses estimated by other methods and techniques, and to assess bias in dose reconstruction models. There has been extensive use of three biodosimetric techniques in irradiated populations: EPR (using tooth enamel), FISH (using blood lymphocytes), and GPA (also using blood); these methods have been supplemented with luminescent methods applied to building materials and artifacts. A large number of investigations have used biodosimetric methods many years after external and, to a lesser extent, internal exposure to reconstruct doses received from accidents, from occupational exposures, from environmental releases of radioactive materials, and from medical exposures. In most applications, the intent has been to either identify highly exposed persons or confirmed suspected exposures. Improvements in methodology, however, have led many investigators to attempt quantification of whole-body doses received, or in a few instances, to estimate organ doses. There will be a continued need for new and improved biodosimetric techniques not only to assist in future epidemiologic investigations but to help evaluate the long-term consequences following nuclear accidents or events of radiologic terrorism.  相似文献   

16.
The state-of-the-art in the use of thermoluminescence for the measurement of energy imparted by ionizing radiation is discussed. Emphasis is on the advantages obtainable by the use of computerized glow curve analysis in (i) quality control, (ii) low dose environmental dosimetry, (iii) medical applications (especially precision) and microdosimetric applications, and (iv) mixed field ionization-density–dosimetry. Possible frontiers of future research are highlighted: (i) vector representation in glow curve analysis, (ii) combined OSL/TL measurements, (iii) detection of sub-ionization electrons, (iv) requirements for new TL materials and (v) theoretical subjects involving kinetic modeling invoking localized/delocalized recombination applied to dose response and track structure theory including creation of defects.  相似文献   

17.
Polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are both good candidates for use as scintillation base substrates. One advantage is their relatively high density of 1.33 g cm3. To enhance their relative strengths and to mitigate their weaknesses, we blended PET and PEN 1:1 by weight and found that the overall characteristics are improved. The wavelength at maximum emission was 415 nm, the refractive index was 1.61, and the light yield was 0.85 times that of PEN. These results increase the available options for base materials to be used as scintillators.  相似文献   

18.
Central transition (CT) sensitivity enhancement schemes that transfer polarization from satellites to the CT through selective saturation or inversion of neighboring satellite transitions have provided a welcome improvement for magic-angle spinning spectra of half-integer quadrupole nuclei. While many researchers have investigated and developed different methods of creating enhanced CT populations, here we investigate the conversion of these enhanced CT populations into observable CT coherence. We show a somewhat unexpected result that a conversion pulse length optimized for maximum sensitivity on equilibrium populations may not be optimum for an enhanced (non-equilibrium) polarization. Furthermore, CT enhancements can be lost if excessive rf field strength is used to convert this enhanced polarization into CT coherence. While a maximally enhanced CT signal is expected when using a perfectly selective CT conversion pulse, we have found that significant sensitivity loss can occur when using surprisingly low rf field strengths, even for sites with relatively large quadrupole coupling constants. We have systematically investigated these issues, and present some general guidelines and expectations when optimizing the conversion of enhanced (non-equilibrium) CT populations into observable CT coherence.  相似文献   

19.
In vivo electron paramagnetic resonance (EPR) tooth dosimetry provides a means for non-invasive retrospective assessment of personal radiation exposure. While there is a clear need for such capabilities following radiation accidents, the most pressing need for the development of this technology is the heightened likelihood of terrorist events or nuclear conflicts. This technique will enable such measurements to be made at the site of an incident, while the subject is present, to assist emergency personnel as they perform triage for the affected population. At Dartmouth Medical School this development is currently being tested with normal volunteers with irradiated teeth placed in their mouths and with patients who have undergone radiation therapy. Here we describe progress in practical procedures to provide accurate and reproducible in vivo dose estimates.  相似文献   

20.
The complementary strengths and weaknesses of passive and active noise control (ANC) methods have motivated many researchers to develop hybrid noise absorbers that integrate both control strategies. The impedance matching technique (IMT) is the most effective for such a purpose. An unsolved problem with available IMT schemes is the a priori reference signal that limits IMT applications. This study proposes the use of the forward wave, available by the two-microphone method, as the reference signal. Due to inevitable errors in wave separation and inlet reflection of the control signal, the absorber becomes a feedback system. A simple and stable ANC is developed for impedance matching without the a priori reference signal. The proposed absorber has an absorption coefficient of 0.9 or above in a frequency range of 60-850 Hz. It is stable in the presence of sensor mismatch and robust with respect to significant variation of inlet boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号