首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-consistent charge density-functional tight-binding (SCC-DFTB) method is employed for studying various molecular properties of small fullerenes: C(28), C(60), and C(70). The computed bond distances, vibrational infrared and Raman spectra, vibrational densities of states, and electronic densities of states are compared with experiment (where available) and density-functional theory (DFT) calculations using various basis sets. The presented DFT benchmark calculations using the correlation-consistent polarized valence triple zeta basis set are at present the most extensive calculations on harmonic frequencies of these species. Possible limitations of the SCC-DFTB method for the prediction of molecular vibrational and optical properties are discussed. The presented results suggest that SCC-DFTB is a computationally feasible and reliable method for predicting vibrational and electronic properties of such carbon nanostructures comparable in accuracy with small to medium size basis set DFT calculations at the computational cost of standard semiempirical methods.  相似文献   

2.
3.
The structures and electronic properties of nanoscale "peapods," i.e., C(50) fullerenes inside single-walled carbon nanotubes (SWCNTs), were computationally investigated by density functional theory (DFT). Both zigzag and armchair SWCNTs with diameters larger than 1.17 nm can encapsulate C(50) fullerenes exothermically. Among the SWCNTs considered, (9,9) and (16,0) SWCNTs are the best sheaths for both D(3) and D(5h) isomers of C(50), corresponding to 0.32-0.34 nm tube-C50 distances. The orientation of C(50) inside nanotubes also affects the insertion energies, which depend on the actual tube-fullerene distances. The insertion of D(3) and D(5h) isomers of C(50) is somewhat selective; the less stable D(5h) isomer can be encapsulated more favorably inside SWCNTs at same tube-C(50) spacing. Because of the weak tube-C(50) interaction, the geometric and electronic structures of the peapods do not change greatly for the most stable configurations, but the selectivity in the interwall spacing and isomer encapsulation can be useful in separating various carbon fullerenes and their isomers.  相似文献   

4.
The structure, vibrational spectra and electronic properties of the neutral, singly and doubly charged C52 fullerenes were studied by means of the Hartree-Fock method and density functional theory. Different isomers were considered, in particular those with the lowest possible number (five or six) of adjacent pentagons, and an isomer with a four-atom ring. For neutral and singly charged species, the most stable isomer is that with the lowest number of adjacent pentagons, namely five. However, for C(52)2+, the most stable structure has six adjacent pentagons. This finding, which contradicts the pentagon adjacency penalty rule, is a consequence of complete filling of the HOMO pi shell and the near-perfect sphericity of the most stable isomer. The simulated vibrational spectra show important differences in the positions and intensities of the vibrations for the different isomers.  相似文献   

5.
First-principles calculations based on density functional theory have been performed for exploring the structural and electronic properties of Bi-doped Hg0.75Cd0.25Te (MCT), using the state-of-the-art computational method with the Heyd–Scuseria–Ernzerhof (HSE) of hybrid functional to correct the band gap. Structural relaxations, charge densities, electron localization functions (ELFs), density of states (DOSs), band structures, and band decomposed charge density were obtained to reveal the amphoteric behavior of Bi in Hg0.75Cd0.25Te. The bonding characteristics between Bi and host atoms were discussed by analyzing charge densities and ELFs. The influence of Bi impurity on the electronic structure of Bi-doped Hg0.75Cd0.25Te was also analyzed by the calculated DOSs, band structures, and the band decomposed charge density of the defect band. It has been demonstrated that Bi can show a typical amphoteric substitution effect of group V elements.  相似文献   

6.
Calculations are presented for the structural, electronic, and vibrational properties of the different Ti8C12 metallocarbohedrynes. (Please note that we adopt the name "metallocarbohedrynes" instead of "metallocarbohedrenes" to denote the acetylenic nature of C2 units in this class of clusters demonstrated by several contributions in literature.) The density-functional theory (DFT) calculations are performed with the all-electron projector augmented-wave method and generalized gradient approximation for the exchange-correlation functional. We study the seven low-energy isomers of the Ti8C12 metallocarbohedrynes using spin-polarized DFT, where we find a correlation between the number of rotated carbon dimers and the cohesive energy of the structure. The electronic density of states (eDOS) show that C3nu, D*3d, and D3d isomers are spin polarized. The partial eDOS shows that, depending on the dimer orientation, carbon atoms and a subgroup of the metal atoms form a covalent framework while other metal atoms are bonded to this framework more ionically. This picture is further supported by the charge density of the different structures, where we see that the Ti atoms with higher charge density show less contribution to the covalent bonding of the Ti-C framework. The vibrational spectra of the different structures are calculated using the frozen-vibration method. Also, we calculate the vibrational spectra of the C3nu and C2nu structures using molecular-dynamics simulations at two different temperatures. The results of the simulations demonstrate the local stability of the structures beyond the harmonic limit explored by the frozen-vibration method.  相似文献   

7.
We report laser photoelectron spectra of the doubly negatively charged fullerenes C(76) (2-), C(78) (2-), and C(84) (2-) at 2.33, 3.49, and 4.66 eV photon energy. From these spectra, second electron affinities and vertical detachment energies, as well as estimates for the repulsive Coulomb barriers are obtained. These results are discussed in the context of electrostatic models. They reveal that fullerenes are similar to conducting spheres, with electronic properties scaling with their size. The experimental spectra are compared with the accessible excited states of the respective singly charged product ions calculated in the framework of time dependent density functional theory.  相似文献   

8.
A quantum-chemical simulation of new hybrid nanostructures consisting of regular chains of the small fullerenes C20 and C28 encapsulated into the bulk of achiral zigzag single-walled boron-nitrogen nanotubes [(C20,C28)@BN-NT]. The electronic properties and the nature of interatomic bonds in these nanostructures are analyzed as a function of the fullerene and the distances between fullerenes in the chain and between fullerenes and tube walls. The electronic characteristics of hybrid nanostructures are compared with those of "isolated" fullerenes and nanotubes, and (C20,C28) + BN-NT structures simulating fullerene adsorption on tube surface as the initial stage of (C20,C28)@BN-NT formation.  相似文献   

9.
We study the spectral properties of two kinds of derivatives of the carbon fullerene C(60), small fullerenes and Si-heterofullerenes, by ab initio calculations. The principal method of study is the time-dependent density-functional theory in its full time-propagation form. C(20), C(28), C(32), C(36), and C(50), the most stable small fullerenes in the range of C(20)-C(50), are found to have characteristic features in their optical absorption spectra, originating from the geometry of the molecules in question. The comparison of measured and calculated absorption spectra is found to be a useful tool in differentiating between different, almost isoenergetic ground state structure candidates of small fullerenes. Substitutionally doped fullerenes are of interest due to their enhanced chemical reactivity. It is suggested that the doping degree can be obtained by studying the absorption spectra. For example, it is observed that the spectra gradually change when doping C(60) up to C(48)Si(12) so that absorption in the visible and near infrared regions increases.  相似文献   

10.
Ab initio methods have been used to study the lowest lying [H, Si, N, C, O] isomers, which are of astrochemical interest. Over 20 [H, Si, N, C, O] isomers in the 1A' electronic state have been investigated at the MP2/aug-cc-pVTZ level of theory. Of these, the seven lowest isomers have been further investigated using different levels of theory, including B3LYP and QCISD(T). It has been found that the relative energies of the isomers in their ground electronic state (1A') are very dependent on the level of theory used with either the cis-HOSiCN or cis-HOSiNC isomers being the lowest in energy. Overall, the four lowest isomers are within 6 kcal/mol of each other, and a further three isomers are less than 15 kcal/mol higher in energy than the lowest lying isomer, including HSiNCO, which has recently been detected spectroscopically. Natural bond analysis has been carried out on the ground electronic states of the seven lowest lying isomers to examine their electronic structure. The enthalpies of formation of the seven lowest isomers have also been evaluated using the G3MP2 and G3B3 multilevel methods and show that the isomers are relatively thermodynamically stable. The structures and energies of lowest lying 1A' and 3A' electronic states of these isomers have also been investigated and show that for most of the isomers the optimized structures in these excited electronic states correspond to a transition state structure.  相似文献   

11.
A comprehensive theoretical investigation on structures and properties of niobium clusters in the range from 13 to 20 atoms, in three different charged states, is performed by using the BPW91 and M06 functionals and the cc-pVDZ-PP basis set. These species are predicted to prefer low spin ground state, i.e., singlet (for even electron) and doublet (for odd electron) systems. In terms of growth mechanism, a compact structure with one Nb encapsulated by a cage formed from five and six triangles is found to be favored over an icosahedral evolution. Unlike many 3d metals, whose volumes are much smaller, 13 and 19 Nb atoms clusters do not exist as icosahedra and double-icosahedra. A distinct case is Nb(15) as it bears a slightly distorted bcc structure. For some systems, several lower lying isomers are computed to be so close in energy that DFT computations cannot clearly establish their ground electronic states. The existence of structural isomers with comparable energy content is established for Nb(n) species with n = 13, 18, 19, and 20 in both neutral and charged states. The vibrational (IR) spectra are also calculated. While the spectra of smaller systems are strongly dependent on addition or removal of an electron from the neutral, the spectra of the larger size clusters are mostly independent of the charged state. The neutrals and their corresponding ions usually have a quite similar IR pattern. Electron affinities (EA), ionization energies (IE), average binding energies, dissociation energies, and frontier orbital energy gaps are evaluated. The computed EAs and IEs are generally in fair agreement with experiment. The Nb(15) system is observed to be stable and it can form a highly symmetric structure in all charged states with both open and closed electron shells.  相似文献   

12.
This paper reports extensive calculations on the structural, thermodynamic, and mid-infrared spectroscopic properties of neutral and cationic model iron-polycyclic aromatic hydrocarbon (PAH) complexes of astrophysical interest for three PAHs of increasing size, namely, naphthalene (C10H8), pyrene (C16H10), and coronene (C24H12). Geometry optimizations and frequency calculations were performed using hybrid Hartree-Fock/density functional theory (DFT) methods. The use of DFT methods is mandatory in terms of computational cost and efficiency to describe the electronic and vibrational structures of such large organometallic unsaturated species that present several low-energy isomers of different structures and electronic and spin states. The calculated structures for the low-energy isomers of the model Fe-PAH and Fe-PAH+ complexes are presented and discussed. Iron-PAH binding energies are extracted, and the consequences of the coordination of iron on the infrared spectra of neutral and cationic PAHs are shown with systematic effects on band intensities and positions being demonstrated. The first results are discussed in terms of astrophysical implications. This work is the first step of an ongoing effort in our group to understand the photophysics and spectroscopy of iron-PAH complexes in the conditions of the interstellar medium using a synergy between observations, laboratory experiments, and theory.  相似文献   

13.
We report classical and tight-binding molecular dynamics simulations of the C(60) fullerene and cubane molecular crystal in order to investigate the intermolecular dynamics and polymerization processes. Our results show that, for 200 and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations, while C(60) fullerenes show rotational motions. Fullerenes perform "free" rotational motions at short times (approximately < 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (approximately > 10 ps). The mechanisms underlying these dynamics are presented. Random copolymerizations among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure. Changes in the radial distribution function and electronic density of states indicate the coexistence of amorphous and crystalline phases. The different conformational phases that cubanes and fullerenes undergo during the copolymerization process are discussed.  相似文献   

14.
Unconventional fullerenes are those smaller than C(60) or those intermediate between C(60) and C(70), which are not stable in structure as none of the unconventional fullerene isomers satisfying the "isolated-pentagon-rule" (IPR). Below we report the synthesis of a stable unconventional fullerene derivative C(64)H(4) by introducing methane in the fullerene productions with the normal Kr?tschmer-Huffman method. We also applied various spectroscopic measurements such as mass spectrometry, (13)C NMR, IR, UV-vis absorption spectrometry, etc. to characterize the structural and electronic properties of this molecule, revealing an unprecedented fullerene cage with a triplet of directly fused pentagons in the framework of C(64)H(4). Four hydrogen atoms are added to the carbons at vertexes of fused pentagons to allow the bond angles at these sites close to the sp(3) tetrahedral angle, which essentially release the sp(2) bond strains on the abutting-pentagon sites of C(64). Ab initio calculations were performed to explore the electronic property and simulate the (13)C NMR and IR spectra of this fulleride, which reproduced well the experimental results and confirmed the structural assignment of the C(64)H(4).  相似文献   

15.
We performed a first principles total energy investigation on the structural, electronic, and vibrational properties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimantadine isomers with the functional groups bonded to different carbon sites. By comparing our results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples.  相似文献   

16.
Multi-shell fullerenes are widely studied for their interesting properties although comparative studies on single- and multi-shell structures remain scarce. In this work, important electronic features of single- and double-shell icosahedral fullerenes as a function of their sizes were calculated in the framework of the density functional theory. Fully optimized structures were used to get the gap between the highest occupied molecular and the lowest unoccupied molecular orbital (H-L gap), electronegativity, softness and density of the electronic states. This work shows that the H-L gap of the single-shell fullerenes decreases nonlinearly as the nanoparticles size increases, whereas for the double-shell fullerenes an opposite trend is obtained. A decrease of the H-L gap is found going from single- to double-shell fullerenes with similar external sizes, up to a diameter of 3.13 nm. The electron density of states revealed that isolated peaks give way to more dense electronic states for nanoparticles with diameters above 2 nm.  相似文献   

17.
Interstellar species have been of interest to chemists because of their unusual structures and reactivities, such as CN, NP, CP, and SiN, which have been identi-fied in interstellar medium[1―4] and well characterized for the formation, structures, spectr…  相似文献   

18.
We have investigated the structure of HO2 and a series of alkyl peroxyl radicals ROO using a variety of quantum mechanical methods. We first compute the geometries, vibrational frequencies, electronic charge distributions, and spin densities for the series of radicals considered in the gas phase. Significant differences with respect to previous calculations have been pointed out in a few cases. In particular, we show the fundamental importance of electronic correlation when computing net atomic charges and spin densities, which have generally been estimated in the litterature by means of Hartree–Fock SCF electronic densities. Solvation effects on the geometry and electronic structure have been estimated by carrying out self-consistent reaction field computations in a polarizable continuum environment with relative dielectric permittivity equal to that of liquid water. Large electronic polarization is predicted in such conditions. This may be important in order to understand reactive properties of the radicals in different media. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1039–1048, 1999  相似文献   

19.
Two leapfrog isomers of a B(112) boron fullerene are constructed from small C(28) fullerenes (T(d) and D(2) symmetries) by the leapfrog transformation combined with omnicapping of the new hexagons. Their electronic structure is analyzed using the density functional theory at the B3LYP/SVP and BHLYP/SVP levels. Both isomers are characterized as minima on the potential energy hypersurface with a HOMO-LUMO gap at B3LYP/SVP of 1.7 eV and 1.6 eV (3.1 and 3.0 eV at BHLYP/SVP), respectively. The optimized structure of the helical D(2)-leapfrog is asymmetric, due to radial displacements of the capping atoms. The computed cohesive energies amount to -4.2 eV (~0.04 eV lower than B(80)). The B(112) isomers are isoelectronic to T(d)-C(84) and D(2)-C(84), and HOMO and LUMO orbitals in both isomers closely resemble those of their C(84) homologues. Energetic stability of leapfrog boron fullerenes depends on the isolation of empty hexagon criterion, which is defined by the empty hexagon index based on the total number of empty hexagon pairs and empty hexagon-pentagon fused pairs. The switch of the cap atom to the nearest or farthest empty hexagon destabilizes the cage by 1.6 and 2.7 eV, respectively. The destabilization becomes more enhanced in non-leapfrog structures wherein more caps are displaced.  相似文献   

20.
The 2385 classical isomers and four nonclassical isomers of fullerene C62 have been studied by PM3, HCTH/3-21G//SVWN/STO-3G, B3LYP/6-31G(d)//HCTH/3-21G, and B3LYP/6-31G(d)//B3LYP/6-31G(d). The Cs:7mbr isomer, with a chain of four adjacent pentagons surrounding a heptagon, is predicted to be the most stable isomer, followed by C2v:4mbr which is 3.15 kcal/mol higher in energy. C2:0032 with three pairs of adjacent pentagons is the most stable isomer in the classical framework. To clarify the relative stabilities of C62 isomers at high temperatures, the entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP/6-31G(d) level. Analyses reveal that Cs:7mbr prevails in a wide temperature range. The vibrational frequencies of the five most stable C62 fullerene isomers are also predicted at the B3LYP/6-31G(d) level, and the simulated IR spectra show important differences in positions and intensities of the vibrational modes for different isomers. The nucleus-independent chemical shift and the density of states of the three most stable isomers show that the square in C2v:4mbr and the adjacent pentagons in Cs:7mbr and C2:0032 possess high chemical reactivity. In addition, the electronic spectra and second-order hyperpolarizabilities are determined by means of ZINDO and the sum-over-states mode. The intensity-dependent refractive index gamma(-omega; omega, omega, -omega) at omega = 2.3305 eV of Cs:7mbr is very large because of resonance with the external field. The second-order hyperpolarizabilities of the five most stable isomers of C62 are predicted to be larger than those of C60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号