首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of optical planar waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange was reported. The prism-coupling method was used to characterize the dark-line spectroscopy at the wavelength of 633 and 1539 nm, respectively. The mode optical near-field outputs from proton-exchanged LiNbO3 and SLN waveguides at 633 nm were presented. The mode field from stoichiometric LiNbO3 (SLN) waveguide is lighter and more uniform than that from LiNbO3 waveguide, which means the quality of the waveguide in SLN crystal is better than that of the LiNbO3 waveguide. For proton-exchanged LiNbO3 waveguides, the evolution of the refractive index profile with annealing was presented. The disorder profiles of Nb atoms in proton-exchanged LiNbO3 waveguides were obtained by Rutherford backscattering/channeling technique. It is shown that the longer the exchange time, the larger the displacement of Nb atoms. Supported by the National Natural Science Foundation of China (Grant No. 10475052) and the Scientific Research Start-up Financing of Qufu Normal University  相似文献   

2.
Photovoltaic currents along the c axis have been measured in α-phase LiNbO3 proton-exchanged waveguides at several visible wavelengths for a guided-beam configuration. The light-intensity dependence is superlinear and all experimental curves are very well fitted by computer simulations using a two-centre model, with Fe2+/Fe3+ as primary and NbLi 4+/NbLi 5+ as secondary photovoltaic centres. The superlinear behaviour arises from a much higher effective photovoltaic length of NbLi 4+ (small polaron) compared with that of Fe2+. In β1-phase guides, the photocurrents are much smaller than in α-phase guides and apparently do not show superlinear behaviour. Received: 22 October 2002 / Revised version: 6 January 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +34-91/3978-579, E-mail: m.carrascosa@uam.es  相似文献   

3.
The generation of periodically poled structures in waveguides prepared by swift-heavy-ion (SHI) irradiation, i.e. in the electronic stopping power regime, has been achieved following two different strategies. In one of them we have prepared bulk PPLN samples by an applied electrical field, followed by irradiation with F ions at 22 MeV. After the ion irradiation, a waveguide showing a high optical confinement is obtained, preserving the original PPLN structure. The second strategy consisted of electric periodic poling of previously fabricated swift-ion-irradiated waveguides. To our knowledge this method has not been, so far, successful for conventional implanted waveguides. The successful fabrication of PPLN structures on novel waveguides prepared by SHI irradiation offers a promising potential for nonlinear integrated optical devices.  相似文献   

4.
A mode-selective directional coupler based on titanium in-diffused channel waveguides in lithium niobate is investigated. This coupler may be utilized as a key part of an add-drop multiplexer for dense wavelength division multiplexing in optical network nodes. The proposed coupler is based on evanescent coupling of the fundamental mode of a single-mode channel to the first higher mode of a parallel bi-modal waveguide. Our experimental results show that a compact directional coupler with coupling efficiencies larger than 90%, large bandwidth around 1550 nm, and with negligible polarization dependence can be realized using electro-optic lithium niobate substrates. Presented at 9-th International Workshop on Nonlinear Optics Applications, NOA 2007, May 17–20, 2007, Świnoujście, Poland  相似文献   

5.
Wavelength conversion between picosecond pulses with the cascaded second-order nonlinearity in LiNbO3 waveguides is simulated numerically using finite difference beam propagation method. The influences of group-velocity mismatching and input pulse parameters on conversion efficiency and generated pulse characteristics are analyzed. The results indicate that increasing the input pump pulse width will enhance conversion efficiency but diminish compression ratio of the generated pulse. The generated pulse is inevitably compressed under pulsed pumping, and introducing the initial time delay can reshape the generated pulse.  相似文献   

6.
Comparative studies are made of the photorefractive scattering of light in nonlinear single crystals of lithium niobate with congruent compositions (LiNbO3) doped with "photorefractive" Cu [0.015 mass %] and "nonphotorefractive" Zn [0.5 mass %] cations. For the first time it is found that single crystals doped with "photorefractive" and "nonphotorefractive" cations have different indicatrices for photorefractive light scattering. The aperture angle for photorefractive scattering reaches its steady state value more rapidly with high laser powers than with low. However, at high powers laser induced heating of the crystal is greater, and this leads to a narrowing of the scattering indicatrix. It is also found that photorefractive scattering in these single crystals depends on the region of the boule from which a sample has been cut. This indicates that there is a nonuniform distribution over the boule of the imperfections with localized electrons which determine the magnitude of the photorefractive effect.  相似文献   

7.
Polymer stabilized cholesteric texture cells with various chiral and monomer concentrations were fabricated. Electro-optical measurement indicates that the chiral concentration and the monomer concentration significantly influence the hysteresis, threshold voltage and field-on and field-off response times of the cell. The chiral dopant is found to increase the hysteresis width and to decrease the field-off response time of the cell. The monomer is found to decrease the hysteresis width and to increase the field-off response time of the cell. The field-on response time is independent of the monomer concentration and the chiral concentration of the cell. A thinner cell has a smaller hysteresis width. PACS 61.30.-v; 42.70.Df; 42.79.Kr  相似文献   

8.
Femtosecond laser-induced structural changes in LiNbO3 are studied. Depending on the laser processing parameters two different types of modification are identified and their origin is discussed. Both types of modification can be described within the framework of induced lattice defects. For strong material damage a refractive index increase can be obtained due to the induced stress field. By appropriate tailoring of this stress field thermally stable and highly symmetric waveguides can be obtained well suited for nonlinear integrated-optical applications. PACS 61.80.Ba; 77.84.Dy; 42.65.Re; 42.82.Et  相似文献   

9.
Microwave and optical properties of lithium niobate electrooptic modulators are investigated in this paper. The effect of simultaneous matching of optical and microwave velocities and impedance matching, conductor loss, dielectric loss on the optical bandwidth of an ultra-high-speed lithium niobate modulator are presented here. The metal electrode design, buffer thickness, ridge depth, and the gap between electrodes at different operating frequencies on device performance are thoroughly investigated by using the finite element method.  相似文献   

10.
A model for calculation of kinetic characteristics of electronic excitation decay in the impurity subsystem of doped crystals with taking into account the phenomenon of excitation trapping is suggested. Numerical calculations are carried out for LiNbO3:Yb3+ crystals: the probabilities of elementary acts of resonant and non-resonant nonradiative redistributions of electronic excitation energy in the impurity subsystem are calculated and the dependences of excitation lifetime and luminescence quantum yield on the concentration of pair centers in the matrix of LiNbO3 crystals are determined.  相似文献   

11.
Using the method of impedance spectroscopy and optical density measurements, the diffusion of oxygen in single crystals of lithium niobate of the congruent composition after the reductive thermochemical processing is studied. The parameters describing the diffusion of oxygen in the temperature range 493–693 K are established.  相似文献   

12.
Structural modifications induced by femtosecond laser pulses in LiNbO3 were studied. The influence of the processing and focusing parameters was investigated. Two different types of modifications could be identified. High laser fluences cause a refractive index decrease, material damage and stresses in the surrounding crystalline lattice. At low laser fluences, an extraordinary index increase was observed that allows for optical waveguiding. This kind of modification is thermally unstable and correlates to a weak distortion of the lattice. The electrooptic coefficient measured in a waveguide was found to be substantially reduced. The mechanisms underlying the structural modifications are discussed. PACS 61.80.Ba; 77.84.Dy; 42.82.Et; 42.65.Re  相似文献   

13.
Photorefractive scattering occurs in rhodium-doped lithium niobate crystals irradiated by coherent light. The photorefractive scattering has both wide-angle and selective components. The results of experimental investigation of selective photorefractive scattering in LiNbO3:Rh crystals and calculation of the spatial structure of scattering are reported. The selective scattering is regarded as a kind of a frequency-degenerate fourwave vector interaction.  相似文献   

14.
Different ways of inducing changes in the optical inhomogeneity of single crystals of lithium niobate are described. These include the application of a conductive coating in combination with the heating of samples and exposure to the field of a corona discharge, to UV radiation from a Nd:YAG laser, and to the electron beam of an electron microscope. All such effects can be used to record images.  相似文献   

15.
16.
Fabrication of patterned materials in ferroelectric LiNbO3 and LiTaO3 crystals using femtosecond laser micromachining is presented and discussed. Damage feature sizes in the 10–100 μm range were achieved using 800-nm, 50-fs (FWHM) ultra-fast laser pulses with energies ranging from 10 μJ up to 350 μJ. Fabrication of polaritonic devices such as waveguides, resonators, focusing reflectors, diffractive and dispersive elements, photonic band gap materials, and other microstructures is demonstrated. PACS 77.84.Dy; 42.62.Cf; 71.36.+c  相似文献   

17.
The photorefractive behaviour of a novel type of optical waveguides fabricated in LiNbO3 by swift heavy ion irradiation is investigated. First, the electro-optic coefficient r 33 of these guides that is crucial in the photorefractive effect is measured. Second, two complementary aspects of the photorefractive response are studied: (i) recording and light-induced and dark erasure of holographic gratings; (ii) optical beam degradation in single-beam configuration. The main photorefractive parameters, recording and erasing time constants, maximum refractive-index change and optical damage thresholds are determined.  相似文献   

18.
We present wavelength- and temperature-dependent refractive index equations for 5% MgO-doped congruent PPLN and for 1% MgO-doped stoichiometric PPLN crystals valid for a wide spectral and temperature range. The dispersion equations were derived from quasi-phase-matched nonlinear interactions with these two crystal compositions in the near and mid-infrared. The results show a good agreement with previously published frequency conversion experiments. PACS 42.65.Ky; 42.65.Yj; 42.70.Mp  相似文献   

19.
The luminescence properties of Neodymium ions in Zn diffused LiNbO3 channel waveguides have been studied with sub-micrometric spatial resolution. The analysis of the luminescence spectra suggests the existence of a local expansion and disordering associated to the presence of Zn in the LiNbO3 lattice after the diffusion process. By taking this cause–effect relation into account, it has been possible to determine both the in-depth and lateral Zn diffusion lengths, as well to elucidate the spatial location of the channel waveguide. PACS 42.65.Wi; 87.64.Tt; 42.55.Rz  相似文献   

20.
Possibilities of using lithium niobate crystals, doped with ytterbium (LN:Yb3+) as materials for optical temperature sensor (OTS), are discussed. We consider both the radiative and absorptive characteristics of the crystals, assuming that their temperature dependences are caused by the Boltzmann factor of the initial population of Stark sublevels of the ion. It is shown that the crystals can be used as materials for OTS in the temperature range 150–400 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号