首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
利用连续流动微反催化装置、XRD、吡啶吸附IR光谱和氮气吸附等方法研究了气相预氟化处理对MoCo/Al2O3-TiO2催化剂物化性能和噻吩加氢脱硫催化活性的影响.文章对0.5V%~8V%各种氟里昂浓度和200℃~450℃各种温度条件下氟化处理的样品进行了详细考察,发现在350℃下由含氟里昂1V%的湿空气氟化的载体并按常规法制备的催化剂样品,其噻吩的加氢脱硫活性有明显改善,相对于未氟化样品或BY-2工业催化剂提高20%~30%,且活性非常稳定.初步表征结果表明,氟里昂气相加氟优于氟盐溶液浸渍加氟,不破坏催化剂的结构,不降低催化剂的表面积.微量氟的引入在促进活性金属组分的分散和活性相的形成方面可能比酸性的影响更重要.  相似文献   

2.
超声波-微波法制备NiW/Al2O3加氢脱硫催化剂   总被引:12,自引:0,他引:12  
 采用一次浸渍技术制备了NiW/Al2O3加氢脱硫(HDS)催化剂,在制备过程中采用超声波处理浸渍液,采用微波进行样品干燥. 以噻吩为模型化合物,在微反装置上评价了该催化剂的加氢脱硫活性. 使用X射线光电子能谱和透射电镜等表征手段研究了催化剂的表面状态和物化性. 结果表明,使用超声波及微波技术制备的NiW/Al2O3催化剂具有较高的加氢脱硫活性,催化剂的活性组分较易硫化,可生成更多的硫化物种参与反应. 催化剂中硫化态钨的表面原子浓度较高,从而使硫化态钨物种保持较高的表面分散度,有利于增加活性中心的数目. 该催化剂的活性中心结构具有较多配位不饱和的边缘位和棱边位,因而具有较高的加氢脱硫活性.  相似文献   

3.
利用脉冲电磁场(PEMF)辅助浸渍法和常规等体积浸渍法制备了一系列CoMo/γ-Al_2O_3加氢脱硫催化剂样品。以噻吩、2-甲基噻吩或苯并噻吩为模型化合物,在微反装置上评价了催化剂的加氢脱硫活性,经200 V脉冲电磁场处理的催化剂上各硫化物的转化率均比常规催化剂明显提高。采用XRD、BET、H_2-TPR和TEM等方法表征了催化剂样品的表面状态和物化性质。结果表明,适当强度的脉冲电磁场与制备体系内带电粒子的交互作用有助于催化剂活性组分的分散,使活性组分在γ-Al_2O_3载体表面分布更为均匀,同时削弱了活性组分MoO_3同载体间的较强相互作用,降低了催化剂表面钼物种的还原温度,促进了CoMoS活性相的形成。  相似文献   

4.
用微波技术制备NiW/TiO2-Al2O3加氢脱硫催化剂   总被引:7,自引:0,他引:7  
 采用微波技术制备了NiW/TiO2-Al2O3加氢脱硫催化剂,并用NH3-TPD,Py-FT-IR,TPR和TPS(程序升温硫化)对催化剂进行了表征; 以噻吩为模型化合物,在中压固定床微反装置上考察了催化剂的加氢脱硫性能. 结果表明,在w(TiO2)=15%的催化剂样品中,微波处理的催化剂的活性比常规催化剂高. 微波处理改变了载体和催化剂表面的酸性质,催化剂样品表面的强酸酸量减少,弱酸和中强酸酸量增加. 微波处理的催化剂的还原性能和硫化性能均好于常规法制备的催化剂. 这可能是微波技术制备的催化剂具有较高加氢脱硫活性的原因.  相似文献   

5.
微波辐射法制备NiW/TiO2-Al2O3加氢脱硫催化剂   总被引:2,自引:0,他引:2  
 利用微波技术和常规等体积浸渍法制备了一系列NiW/TiO2-Al2O3加氢脱硫催化剂样品,并采用BET,XRD,XPS和TPS(程序升温硫化)方法对催化剂样品进行了表征. 结果表明,微波处理改变了催化剂的孔径分布,提高了WO3,NiO和TiO2在Al2O3表面的的分散性,削弱了WO3和NiO同载体的强相互作用,改善了催化剂的硫化性能. 噻吩脱硫活性考察结果表明,经微波处理的催化剂上噻吩转化率比常规催化剂上提高约5%.  相似文献   

6.
以氢氧化镍为镍源, 亚磷酸为磷源, TiO2柱撑海泡石(Ti-Sep)为载体, 采用浸渍法制备了含磷化镍前驱体的样品, 然后采用程序升温还原法制备了Ni质量分数(w)为5%-25%的Ni2P/Ti-Sep催化剂, 并考察了其噻吩加氢脱硫性能. 采用X射线衍射(XRD)、N2吸附-脱附、热重分析(TGA)、透射电子显微镜(TEM)和傅里叶变换红外(FTIR)光谱对催化剂样品进行了表征. 结果表明, 海泡石经TiO2柱撑之后层间距增大, 比表面积和孔容都明显变大, 热稳定性增强, 活性组分Ni2P能很好地分散在海泡石层间及表面, 并且没有破坏海泡石的层状结构. 上述原因导致Ni2P/Ti-Sep催化剂的噻吩加氢脱硫活性明显优于Ni2P/Na-Sep(NaCl改性海泡石)和Ni2P/HCl-Sep(HCl改性海泡石)催化剂. 当Ni负载量为15% (w)时, Ni2P/Ti-Sep催化剂具有最好的噻吩加氢脱硫性能; 在反应温度为400℃时, 噻吩转化率达100%.  相似文献   

7.
采用水热法合成了MoS2加氢脱硫催化剂,用物理吸附、XRD、SEM、TEM等手段对催化剂进行表征,并以噻吩为模型化合物研究不同类型表面活性剂对合成MoS2催化剂活性的影响。结果表明,加入表面活性剂制备的催化剂颗粒疏松均匀,比表面积、孔容、孔径都较大,并且MoS2层状堆叠数目增加;所制催化剂在噻吩加氢脱硫反应中均显示出较好的催化活性,在573 K、4.0 MPa条件下,噻吩加氢脱硫的转化率均大于97.0%,加入阳离子表面活性剂的Mo-S-C催化活性最高,噻吩转化率可达到99.9%。MoS2催化剂的活性顺序为Mo-S-C>Mo-S-S>Mo-S-P>Mo-S-N。  相似文献   

8.
加氢催化剂氟化后表面B酸和L酸酸性位的红外光谱分析   总被引:1,自引:0,他引:1  
吕士杰  傅宏祥 《分子催化》1993,7(6):471-474
润滑油加氢精制催化剂的表面B酸是加氢脱氮的活性位,表面L酸是加氢裂解的活性位.尽管如此,人们利用红外光谱分析在加氢催化剂硫化后的表面上从未检测到B酸中心.事实上,所有固体催化剂参加的有机反应中,人们已经证实表面酸性位起了重要作用.并且在许多催化过程中,固体催化剂的酸性可以通过加氟来改变.现有两种加氟方法:(1)浸渍法或混浆法,即在催化剂制备过程中,选择合适的氟化物,浸渍到载体上,或与载体组成物混合烧结.(2)原位氟化法,即在催化过程中或在催化过程之前,加一种合适的氟化物于气体流或液体流中,使气体流或液体流通过催化剂加氟.我们首次在国内利用原位氟化技术对润滑油加氢催化剂加氟,即在催化过程中,加入了一种氟化物于润滑油中,在润滑油与催化剂发生作用时,给催化剂补氟,以使因氟流失而活性降低的催化剂恢复活性.  相似文献   

9.
以硫代硫酸铵为硫化剂对MoO3/Al2O3催化剂进行预硫化,考察了制备方法和活化条件对预硫化催化剂噻吩加氢脱硫活性的影响. 结果表明,硫代硫酸铵预硫化的催化剂活化后,加氢脱硫活性好,噻吩的转化率达到99%以上,而二甲基二硫硫化的MoO3/Al2O3催化剂在相同条件下,噻吩转化率只有92%. 合适的活化温度为200~300 ℃, 活化压力增加有利于预硫化催化剂的还原硫化和加氢脱硫活性的提高. 硫代硫酸铵预硫化催化剂的高脱硫活性主要归因于多层的Ⅱ型MoS2活性相的形成,其次是硫化程度的提高. 硫代硫酸铵预硫化催化剂经过氢气活化和补充硫化两个阶段,其硫化程度高于传统方法硫化的催化剂.  相似文献   

10.
在对βMo2N0.78催化剂加氢脱硫催化性能进行考察的基础上,对反应使用后催化剂的组成、结构变化、以及反应后催化剂再处理对活性的影响等几方面进行了研究。结果表明,在噻吩加氢脱硫条件下,βMo2N0.78 催化剂的氮含量下降,表层被硫化,而且钝化过程中产生的氮氧化物被消耗,但体相结构没有发生变化,表现了较强的抗硫化性能;脱硫反应前后催化剂的氢还原处理不能改善催化剂的活性,但预硫化催化剂在反应起始的活性与钝化催化剂在反应稳定时活性相近,加氢脱硫反应后催化剂的再次氮化处理,可以较大程度的恢复催化剂的初始活性。  相似文献   

11.
以γ-Al2O3为载体,钼酸铵为氧化钼前驱体,采用在N2-H2气氛下的程序升温还原氮化反应,制备β-Mo2N0.78/γ-Al2O3催化剂,以噻吩为模型化合物,考察了该催化剂的加氢脱硫反应性能,以及反应温度、氢还原预处理和钴、镍助剂的引入等因素对催化剂活性的影响。结果表明,在320 ℃~400 ℃之间,随着反应温度的升高,催化剂的活性逐渐增加;预还原则降低了催化剂的活性;添加钴、镍均在一定负载量范围内可以改善β-Mo2N0.78/γ-Al2O3催化剂的加氢脱硫活性,但镍对催化剂活性的影响要小于钴。  相似文献   

12.
以磷酸氢二铵为磷源,硝酸镍为镍源,硝酸铝为助剂铝源,制备了nP/nNi=0.8,Al含量为1.06wt%~6.35wt%的一系列Al-Ni2P/SBA-15催化剂。采用XRD、TEM和N2吸脱附等技术对催化剂的结构进行了表征研究,以二苯并噻吩(DBT)作为模型化合物,在微型固定床反应器上对催化剂的加氢脱硫(HDS)性能进行了评价。结果表明,Al修饰的Al-Ni2P/SBA-15催化剂仍然保持介孔结构,当Al含量低于5.29wt%时,催化剂的物相主要是Ni2P,当Al含量在5.29wt%-6.35wt%之间时,催化剂的物相为Ni2P和Ni12P5。Al含量为4.24wt%的3-Al-Ni2P/SBA-15催化剂具有最好的二苯并噻吩加氢脱硫催化活性,在反应温度为360 ℃,反应压力为3.0 MP的条件下,3-Al-Ni2P/SBA-15催化剂对二苯并噻吩的转化率可达99.0%。  相似文献   

13.
通过向S2O82-/ZrO2催化剂中同时引入适量的Pt和Al2O3, 制备出了具有较高催化性能和高稳定性的Pt-S2O82-/ZrO2-Al2O3型固体超强酸催化剂. 以正戊烷异构化反应为探针, 考察了Al含量对催化剂的异构化性能的影响, 并采用XRD, BET, FTIR, TPR, TG-DTA, NH3-TPD和ICP手段对催化剂进行了表征. 结果表明, Al能够延迟ZrO2的晶化温度, 抑制硫的分解; Al能够增加催化剂的比表面积, 增强硫氧键的结合, 提高催化剂的还原性能, 增加催化剂的酸强度和酸总量. 当Al2O3质量分数为2.5%时, Pt-S2O82-/ZrO2-Al2O3固体超强酸催化剂的催化活性最高, 正戊烷异构化收率可达60.02%, 选择性在98.2%以上.  相似文献   

14.
以尿素为燃烧剂,先采用燃烧法制备CuO-ZnO催化剂,接着采用研磨法将其与HZSM-5分子筛均匀混合形成CuO-ZnO/HZSM-5双功能催化剂.采用固定床反应器,在反应温度260℃、压力3.0 MPa、空速1 500 h-1条件下,考察了不同Cu/Zn(摩尔比)催化剂在CO_2加氢合成二甲醚反应中的催化性能.通过XRD、N_2等温吸附脱附、H2-TPR、NH3-TPD对催化剂进行表征,研究了不同Cu/Zn对催化剂结构及表面酸性的影响.结果表明:当Cu∶Z n=6∶4时,催化剂对CO_2催化加氢直接合成二甲醚反应的催化活性和选择性最佳,CO_2的转化率、DME的选择性分别为11.95%和28.74%,且在催化剂上具有更多的低温还原Cu和较强的酸中心,从而提高了CO_2加氢活性和二甲醚的选择性.  相似文献   

15.
张雅静 《分子催化》2016,30(4):346-353
采用均匀沉淀法制备了不同SiO_2含量的CuO-ZnO作为CO_2加氢合成甲醇的活性组分,接着采用研磨法将其与HZSM-5分子筛均匀混合形成双功能催化剂,考察了不同SiO_2含量催化剂在CO_2加氢合成二甲醚反应中的催化性能.通过XRD、N_2等温吸附脱附、H_2-TPR、NH_3-TPD、N_2O滴定对催化剂结构进行表征,研究了SiO_2含量对催化剂结构及表面酸性的影响.结构表征表明助剂SiO_2的加入增加了催化剂的比表面积,提高了催化剂的还原性,使催化剂的表面酸性较为合适,同时在一定程度上能够抑制催化剂活性组分的聚集,从而有效促进了催化剂的催化活性.  相似文献   

16.
采用原位合成法在γ-Al2O3表面合成了锌铝水滑石,再采用顺次浸渍法制备了Ce/Cu/Zn-Al催化材料;将其应用于甲醇水蒸气重整制氢,探讨了Ce含量对Cu/Zn-Al催化剂催化性能的影响.催化剂表征结果表明,CeO_2的引入改善了活性组分铜的分散度、铜的比表面积以及催化剂的氧化还原性质,进而提高了催化剂的催化活性和产氢率.当Ce含量为4%时,催化剂活性最佳,在250℃时,甲醇转化率达到100%,CO摩尔分数为0.39%,与Cu/Zn-Al催化剂相比,甲醇转化率提高了近40%.  相似文献   

17.
采用浸渍法和沉积-沉淀法制备了四种不同的Au/Al2O3催化剂,测定了它们在氢气还原前后及催化反应后的金含量及比表面积,结果表明,制备方法明显影响催化剂的金含量,应用X-光粉末衍射技术研究了这些催化剂经还原处理及反应后的物相变化,金以Au^0物相存在,没有发现氧化态的金物相,考察了该催化剂在CH4/CO2重整反应中的催化活性,发现金催化剂的活性取决于金粒子的大小,浸渍法制备的金催化剂具有较大的金晶粒尺寸,催化活性低,沉积-沉淀法制备的金催化剂金晶粒尺寸较小,催化活性较高,以尿素为沉淀剂制备的催化剂给出1073K时的CH4和CO2转化率分别为8.1%和17.6%,高温反应不仅导致金晶粒的聚集,而且存在明显的金流失现象。  相似文献   

18.
以TiOSO_4·2H_2O和Ce(NO_3)_3·6H_2O为前驱体,采用共沉淀法制备了不同CeO_2含量的CeO_2-TiO_2复合氧化物催化剂.对样品结构进行了表征,考察了催化剂的NH_3-SCR(NH_3选择性催化还原)反应活性、N_2选择性和抗水抗硫性能.结果表明,随着催化剂中CeO_2含量的增加,催化剂的物相结构、晶粒尺寸及脱硝性能均出现规律性变化,这种改变与样品的酸碱性和氧化还原性能的变化有关.当样品中CeO_2的质量分数约为50%时,催化剂的结构呈无定形态,具有较大的比表面积和较多的氧空位,有利于反应物分子在催化剂表面的吸附和活化,拓宽了催化剂的低温活性窗口并提高了NO的转化率.  相似文献   

19.
It was found that, in MoS2/Al2O3 catalysts prepared by exfoliation, the structure of MoS2 is strongly distorted. The catalytic activities of these catalysts and traditionally prepared catalysts toward the hydrodesulfurization of thiophene were compared. It was established that the stacking dimension of MoS2 in the catalysts prepared by exfoliation was 200 Å, whereas it was 20 Å in a standard catalyst. It was demonstrated that, although the number of molybdenum atoms in the edge plane per gram of MoS2 in the catalysts prepared by exfoliation was 10 times smaller than that in the standard catalyst, the activity of these catalysts was close to the activity of the standard catalyst. On this basis, it was suggested that the hydrodesulfurization of thiophene can occur on the basal plane of MoS2 that has a defect-free structure with a distorted environment of molybdenum.  相似文献   

20.
ZrO2在Cu-ZnO-ZrO2甲醇水蒸汽重整制氢催化剂中的作用   总被引:2,自引:0,他引:2  
通过对一系列Cu-ZnO-ZrO2甲醇水蒸汽重整(SRM)催化剂的XRD、TEM和BET表征及催化性能测定,研究催化剂中ZrO2对催化剂粒径、比表面以及对SRM反应性能的影响.结果表明,ZrO2的加入,使催化剂的粒径从15 nm降至10 nm(其中CuO和ZnO的平均粒径分别从7.7和10.4 nm降至3.9和8.7 nm),BET比表面从60 m2•g-1增至78 m2•g-1.随着催化剂含ZrO2量不同,甲醇的转化率和H2、CO2的选择性均产生变化,当催化剂中Zr含量为24.0%(w),反应温度为220 ℃,水、醇摩尔比为1.3时,甲醇的转化率达到51.6%, H2和CO2的选择性达到100%(CO和CH4在产物气体中的体积分数小于10-4),这一结果对甲醇燃料电池甲醇重整器的应用具有重要的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号