首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate a phenomenological model which rationalizes the effects of dielectric hole burning on the basis of heterogeneous dielectric and specific heat relaxation in supercooled liquids. The quantitative agreement between model predictions and dielectric hole-burning observations is lost if the assumption of correlated dielectric and thermal relaxation times is removed from the model. This suggests that dynamically distinct domains in real liquids are associated with a time constant which characterizes both the structural and thermal relaxation behaviors. The calculations demonstrate that the observed burn-induced modifications reflect the spectral selectivity and persistence time of the fictive temperatures within these domains, and that 100 or more cycles of the sinusoidal burn field can be required to saturate the heat accumulated in the slow degrees of freedom. It is also shown that the recovery of dielectric holes is entirely accounted for by the model, and that the persistence times do not provide direct insight into rate exchange processes. Additionally, the model predicts that the heating effects considered here are a significant source of nonlinear dielectric behavior, even in the absence of deliberate frequency selective hole burning.  相似文献   

2.
The relationships between diffusivity and the excess, pair and residual multiparticle contributions to the entropy are examined for Lennard-Jones liquids and binary glassformers, in the context of approximate inverse power law mappings of simple liquids. In the dense liquid where diffusivities are controlled by collisions and cage relaxations, Rosenfeld-type excess entropy scaling of diffusivities is found to hold for both crystallizing as well as vitrifying liquids. The crucial differences between the two categories of liquids emerge only when local cooperative effects in the dynamics result in significant caging effects in the time-dependent behaviour of the single-particle mean square displacement. In the case of glassformers, onset of such local cooperativity coincides with onset of deviations from Rosenfeld-type excess entropy scaling of diffusivities and increasing spatiotemporal heterogeneity. In contrast, for two- and three-dimensional liquids with a propensity to crystallise, the onset of local cooperative dynamics is sufficient to trigger crystallization provided that the liquid is sufficiently supercooled that the free energy barrier to nucleation of the solid phase is negligible. The state points corresponding to onset of transient caging effects can be associated with typical values, within reasonable bounds, of the excess, pair, and residual multiparticle entropy as a consequence of the isomorph-invariant character of the excess entropy, diffusivity and related static and dynamic correlation functions.  相似文献   

3.
4.
The use of the isoconfigurational ensemble to explore structure-dynamic correlations in supercooled liquids is examined. The statistical error of the dynamic propensity and its spatial distribution are determined. The authors present the spatial distribution of the particle non-Gaussian parameter as a measure of the intermittency with which particles exhibit their propensity for motion. The ensemble average of the direction of particle motion is introduced to establish the anisotropy of the dynamic propensity.  相似文献   

5.
Among the outstanding problems in the theory of supercooled liquids are the reasons for the rapid increase in their viscosity and relaxation times as the temperature is lowered towards the glass transition temperature Tg, the nonexponential time dependence of the relaxation, and the possible connection between these two properties. The ferromagnetic Potts model on a square latice is a simple system that is found to exhibit these properties. Our calculations show that in this system the connection between them is associated with the dependence on temperature and time of the average environment of the sites. Some of the consequences of this for understanding the behavior of supercooled liquids are discussed.  相似文献   

6.
We propose a dynamic structure of coupled dynamic molecular strings for supercooled small polar molecule liquids and accordingly we obtain the Hamiltonian of the rotational degrees of freedom of the system. From the Hamiltonian, the strongly correlated supercooled polar liquid state is renormalized to a normal superdipole liquid state. This scenario describes the following main features of the primary or alpha-relaxation dynamics in supercooled polar liquids: (1) the average relaxation time evolves from a high temperature Arrhenius to a low temperature non-Arrhenius or super-Arrhenius behavior; (2) the relaxation function crosses over from the high temperature exponential to low temperature nonexponential form; and (3) the temperature dependence of the relaxation strength shows non-Curie features. According to the present model, the crossover phenomena of the first two characteristics arise from the transition between the superdipole gas and the superdipole liquid. The model predictions are quantitatively compared with the experimental results of glycerol, a typical glass former.  相似文献   

7.
The primary relaxation time scale tau(T) derived from the glass forming supercooled liquids (SCLs) is discussed within ergodic-cluster Gaussian statistics, theoretically justified near and above the glass-transformation temperature T(g). An analysis is given for the temperature-derivative data by Stickel et al. on the steepness and the curvature of tau(T). Near the mode-coupling-theory (MCT) crossover T(c), these derivatives separate by a kink and a jump, respectively, the moderately and strongly SCL states. After accounting for the kink and the jump, the steepness remains a piecewise conitnuous function, a material-independent equation for the three fundamental characteristic temperatures, T(g), T(c), and the Vogel-Fulcher-Tamman (VFT) T(0), is found. Both states are described within the heterostructured model of solidlike clusters parametrized in a self-consistent manner by a minimum set of observable parameters: the fragility index, the MCT slowing-down exponent, and the chemical excess potential of Adam and Gibbs model (AGM). Below the Arrhenius temperature, the dynamically and thermodynamically stabilized clusters emerge with a size of around of seven to nine and two to three molecules above and close to T(g) and T(c), respectively. On cooling, the main transformation of the moderately into the strongly supercooled state is due to rebuilding of the cluster structure, and is attributed to its rigidity, introduced through the cluster compressibility. It is shown that the validity of the dynamic AGM (dynamically equivalent to the standard VFT form) is limited by the strongly supercooled state (T(g) < T < T(c)) where the superrigid cooperative rearranging regions are shown to be well-chosen parametrized solidlike clusters. Extension of the basic parameter set by the observable kinetic and diffusive exponents results in prediction of a subdiffusion relaxation regime in SCLs that is distinct from that established for amorphous polymers.  相似文献   

8.
The recently discovered scaling law for the relaxation times, tau(T,upsilon) = I(Tupsilon(gamma)), where T is temperature and upsilon the specific volume, is derived by a revision of the entropy model of the glass transition dynamics originally proposed by Avramov [J. Non-Cryst. Solids 262, 258 (2000)]. In this modification the entropy is calculated by an alternative route. The resulting expression for the variation of the relaxation time with T and upsilon is shown to accurately fit experimental data for several glass-forming liquids and polymers over an extended range encompassing the dynamic crossover. From this analysis, which is valid for any model in which the relaxation time is a function of the entropy, we find that the scaling exponent gamma can be identified with the Gruneisen constant.  相似文献   

9.
Experimental studies that follow behavior of single probes embedded in heterogeneous systems are increasingly common. The presence of probes may perturb the system, and such perturbations may or may not affect interpretation of host behavior from the probe observables typically measured. In this study, the manifestations of potential probe-induced changes to host dynamics in supercooled liquids are investigated via molecular dynamics simulations. It is found that probe dynamics do not necessarily mirror host dynamics as they exist either in the probe-free or probe-bearing systems. In particular, for a binary supercooled liquid, we find that smooth probes larger than the host particles induce increased translational diffusion in the host system; however, the diffusion is anisotropic and enhances caging of the probe, suppressing probe translational diffusion. This in turn may lead experiments that follow probe diffusion to suggest Stokes-Einstein behavior of the system even while both the probe-free and probe-bearing systems exhibit deviations from that behavior.  相似文献   

10.
The wavevector-dependent shear viscosity, eta(k), is evaluated for a range of temperatures in a supercooled binary Lennard-Jones liquid. The mode coupling theory of Keyes and Oppenheim (Phys. Rev. A 1973, 8, 937) expresses the self-diffusion constant, D, in terms of eta(k). Replacing eta(k) with the usual viscosity, eta identical with eta(k = 0), yields the Stokes-Einstein law. It is found that the breakdown of the SE law in this system is well described by keeping the simulated k-dependence. Simply put, bath processes on all length scales (wavevectors) contribute to D, the system is much less viscous at finite k, and thus D exceeds the SE estimate based upon eta. The functional form of eta(k) allows for the estimation of a correlation length that grows with decreasing T.  相似文献   

11.
We present evidence via molecular simulation that the supercooled fluid states of SPC/E water as well as the "repulsive" and "attractive" supercooled fluid states of a recently introduced model for colloids with short-ranged attractions are characterized by the same functional relationship between self-diffusivity and the pair correlation function. We discuss how this simple relationship connects to an earlier finding that the temperature dependency of a supercooled fluid's single-particle dynamics tracks that of its excess entropy (relative to ideal gas). The generality of this observed structure-property relationship is supported by its ability to successfully describe the nontrivial behaviors of these very different types of model systems.  相似文献   

12.
The mechanism and the rate of hydrogen bond-breaking in the hydration layer surrounding an aqueous protein are important ingredients required to understand the various aspects of protein dynamics, its function, and stability. Here, we use computer simulation and a time correlation function technique to understand these aspects in the hydration layer of lysozyme. Water molecules in the layer are found to exhibit three distinct bond-breaking mechanisms. A large angle orientational jump of the donor water molecule is common among all of them. In the most common ( approximately 80%) bond-breaking event in the layer, the new acceptor water molecule comes from the first coordination shell (initially within 3.5 A of the donor), and the old acceptor water molecule remains within the first coordination shell, even after the bond-breaking. This is in contrast to that in bulk water, in which both of the acceptor molecules involve the second coordination shell. Additionally, the motion of the incoming and the outgoing acceptor molecules involved is not diffusive in the hydration layer, in contrast to their observed diffusive motion in the bulk. The difference in rotational dynamics between the bulk and the hydration layer water molecules is clearly manifested in the calculated time-dependent angular van Hove self-correlation function ( G(theta, t)) which has a pronounced two-peak structure in the layer, and this can be traced to the constrained translational motion in the layer. The longevity of the surrounding hydrogen bond network is found to be significantly enhanced near a hydrophilic residue.  相似文献   

13.
Structural dynamics in liquid water slow down dramatically in the supercooled regime. To shed further light on the origin of this super-Arrhenius temperature dependence, we report high-precision (17)O and (2)H NMR relaxation data for H(2)O and D(2)O, respectively, down to 37 K below the equilibrium freezing point. With the aid of molecular dynamics (MD) simulations, we provide a detailed analysis of the rotational motions probed by the NMR experiments. The NMR-derived rotational correlation time τ(R) is the integral of a time correlation function (TCF) that, after a subpicosecond librational decay, can be described as a sum of two exponentials. Using a coarse-graining algorithm to map the MD trajectory on a continuous-time random walk (CTRW) in angular space, we show that the slowest TCF component can be attributed to large-angle molecular jumps. The mean jump angle is ~48° at all temperatures and the waiting time distribution is non-exponential, implying dynamical heterogeneity. We have previously used an analogous CTRW model to analyze quasielastic neutron scattering data from supercooled water. Although the translational and rotational waiting times are of similar magnitude, most translational jumps are not synchronized with a rotational jump of the same molecule. The rotational waiting time has a stronger temperature dependence than the translation one, consistent with the strong increase of the experimentally derived product τ(R)?D(T) at low temperatures. The present CTRW jump model is related to, but differs in essential ways from the extended jump model proposed by Laage and co-workers. Our analysis traces the super-Arrhenius temperature dependence of τ(R) to the rotational waiting time. We present arguments against interpreting this temperature dependence in terms of mode-coupling theory or in terms of mixture models of water structure.  相似文献   

14.
We investigate the energy relaxation of intermolecular motions in liquid water at temperatures ranging from 220 K to 300 K and in ice at 220 K using molecular dynamics simulations. We employ the recently developed frequency resolved transient kinetic energy analysis, which provides detailed information on energy relaxation in condensed phases like two-color pump-probe spectroscopy. It is shown that the energy cascading in liquid water is characterized by four processes. The temperature dependences of the earlier three processes, the rotational-rotational, rotational-translational, and translational-translational energy transfers, are explained in terms of the density of states of the intermolecular motions. The last process is the slow energy transfer arising from the transitions between potential energy basins caused by the excitation of the low frequency translational motion. This process is absent in ice because the hydrogen bond network rearrangement, which accompanies the interbasin transitions in liquid water, cannot take place in the solid phase. We find that the last process in supercooled water is well approximated by a stretched exponential function. The stretching parameter, β, decreases from 1 to 0.72 with decreasing temperature. This result indicates that the dynamics of liquid water becomes heterogeneous at lower temperatures.  相似文献   

15.
The kinetic equations for one-and two-particle distribution functions were used to study the thermoelastic properties of magnetic liquids in the presence of an external not uniform magnetic field. Dynamic equations for the heat conductivity coefficient λ(ω) and thermal elastic modulus Z(ω) over a wide reduced frequency range were obtained. The asymptotic behavior of λ(ω) and Z(ω) was studied at low and high frequencies; the results were in agreement with those obtained for classic liquids by the method of molecular dynamics. The λ(ω) and Z(ω) values were calculated for a magnetic liquid based on kerosene and Fe3O4 magnetic particles. The numerical data on transfer coefficients and elastic properties of magnetic liquids were on the whole in agreement with the general conclusions of the statistical theory of liquids.  相似文献   

16.
The time correlation function C(t) identical with of the distance fluctuations of a particle moving in a bistable potential under the action of fractional Gaussian noise (fGn) is calculated from a Smoluchowski-type equation derived from a generalized Langevin equation (GLE). The time derivative of this function, dC(t)dt, is compared with data from optical Kerr effect measurements of liquid crystal dynamics in the vicinity of the isotropic-to-nematic transition, which are related to the time derivative of an orientational correlation function. A number of characteristic features of the experimental decay curves, including short and intermediate time power law behavior and long time exponential relaxation, are qualitatively reproduced by the analytical calculations, even though the latter do not explicitly treat orientational degrees of freedom. The GLE formalism with fGn was, in fact, originally proposed as a model of protein conformational fluctuations, so the present results suggest that it may also serve more generally as a model of structural relaxation in complex condensed phase media.  相似文献   

17.
Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.  相似文献   

18.
19.
In this article we present a new, general but simple, microscopic expression for time-dependent solvation energy of an ion. This expression is surprisingly similar to the expression for the time-dependent dielectric friction on a moving ion. We show that both the Chandra-Bagchi and the Fried-Mukamel formulations of solvation dynamics can be easily derived from this expression. This expression leads to an almost perfect agreement of the theory with all the available computer simulation results. Second, we show here for the first time that the mobility of a light solute ion can significantly accelerate its own solvation, specially in the underdamped limit. The latter result is also in excellent agreement with the computer simulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号