首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近年来,氧化还原蛋白质的直接电子转移反应引起了越来越多研究者的兴趣~([1]),研究氧化还原蛋白质的直接电子转移反应,不仅对于探索生命体内的生理作用机理等理论研究具有重要意义,而且为制备基于氧化还原蛋白质直接电化学行为的第三代生物传感器奠定了技术基础.本文研究了硬脂酸(SA)Langmuir-Blodgett(LB)膜固定的辣根过氧化物酶(HRP)在金电极(Au)上的直接电化学行为.  相似文献   

2.
制备了离子液体[BMIM]PF6修饰碳糊电极(CILE), 并对其形貌和电化学行为进行了表征. 采用涂布法利用壳聚糖-皂土有机-无机复合膜将血红蛋白(Hb)固定于CILE电极表面, 利用紫外可见光谱、红外光谱和电化学方法等手段对包埋于膜内的Hb的性质进行了表征. 结果表明, Hb在薄膜内保持了其原始构象与生物活性, 循环伏安实验表明, 在pH=7.0的Britton-Robinson (B-R)缓冲液中, Hb表现出一对峰形良好的准可逆氧化还原峰, 为Hb Fe(III)/Fe(II)电对的特征峰, 对其直接电化学行为进行了研究, 求出式电位为-0.352 V(vs SCE), 电子转移数为0.885, 电荷传递系数为0.578, 表观异相电子转移速率常数为0.149 s-1.  相似文献   

3.
蛋白质是生命的基础,研究氧化还原蛋白质的直接电化学不仅对模拟生物体系电子传递机理具有重要意义,而且为传感器的构筑提供了理论基础。遗憾的是,蛋白的直接电化学在裸电极上很难实现,许多研究者通过在电极上引入表面活性剂来克服该缺点.值得思考的是为什么在表面活性剂存在下,蛋白与电极之间才能实现直接电化学?甚至促进蛋白与电极之间的电子转移速率?因此研究表面活性剂在电极表面上的形态非常必要.我们主要讨论不同乙氧基单元的表面活性剂与蛋白之间在玻碳电极上的电子转移过程.结果表明不同表面活性剂提供给蛋白不同的微环境.当表面活性剂的乙氧基链长达到最佳值时,该修饰电极能固载更多的蛋白.我们利用紫外光谱法检测蛋白在固载过程中是否变性,同时也对所构筑的修饰电极的电催化性能进行表征.  相似文献   

4.
以类离子液体碳糊电极(CILE)为基体电极,采用滴涂法和利用静电吸附作用,制备了Hb/Fe3O4/CILE修饰电极,研究了Hb的直接电化学及其电催化行为,建立了H2O2的计时安培测定新方法。结果表明:Hb在该修饰电极上,Hb呈现了一对准可逆的氧化还原峰,且其在该修饰电极表面表观覆盖度为2.65×10-9moL/cm2;电子转移速率常数为1.35/s;表观米氏常数为1.59×10-5mol/L。在1.0×10-6~4.0×10-5mol/L范围内,催化电流与H2O2浓度呈线性关系(r=0.9976),检出限为3.0×10-7mol/L(S/N=3)。  相似文献   

5.
血红蛋白在纳米金修饰电极上的电化学研究   总被引:2,自引:0,他引:2  
氧化还原蛋白在电极上的直接电化学研究不但能获得有关蛋白质和酶的热力学和动力学性质等重要信息,为开发新型生物传感器和生物反应器提供理论指导,而且对了解它们在生命体内的电子转移机理和生理作用机制具有重要意义。血红蛋白(Hb)是以血红素为辅基的蛋白质,在生物体中的主要  相似文献   

6.
采用循环伏安法和示差脉冲伏安法研究了三磷酸腺苷(ATP)在TiO2掺杂碳纳米纤维(TiO2@CNF)修饰的碳离子液体电极表面(TiO2@CNF/CILE)的电化学行为。结果表明,ATP在TiO2@CNF/CILE表面有一个明显的氧化峰,在pH 3.0的Britton-Robinson(BR)缓冲溶液中修饰电极对ATP具有显著的电催化作用。纤维状的TiO2@CNF能够有效促进电子转移,增加电化学信号。当ATP浓度分别在4.0×10^-9~2.0×10^-6mol/L和2.0×10^-6~1.0×10^-4mol/L范围时,氧化峰电流与ATP浓度呈良好的线性关系,检测限为1.4 nmol/L。修饰电极可用于注射液中ATP的测定。  相似文献   

7.
肌红蛋白在灿烂甲酚蓝修饰电极上的可逆电子传递反应   总被引:3,自引:1,他引:2  
董绍俊 《化学学报》1990,48(6):566-570
利用循环电位吸收法和电位阶跃计时吸收法在薄层电解池中研究了肌红蛋白在灿烂甲酚蓝(BCB)修饰电极上和BCB溶液中的电化学行为。实验表明肌红蛋白可以发生可逆的还原和氧化反应,完全还原和氧化分别需要20和100s, 氧化还原反应的标准速率常数被估算为5.6×10^-^4cm·s^-^1, 并且稳定性很好, 没有蛋白质变性反应发生。用光谱电化学方法测得该反应的标准电极电位和电子转移数与肌红蛋白相符。光电子能谱实验表明肌红蛋白没有吸附在BCB修饰电极上, 对BCB修饰电极促进肌红蛋白的电子转移机理作了初步探讨。  相似文献   

8.
以六氟磷酸正己基吡啶为粘合剂和修饰剂,制备了离子液体修饰碳糊电极(CILE)。用电化学方法依次将纳米金和石墨烯(GR)电沉积在CILE表面制备了相应的修饰电极(GR/Au/CILE)。电极表面纳米金和GR的存在极大地提高了电极的电化学性能。进一步用循环伏安法、示差脉冲伏安法和计时库仑法等电化学方法研究了芦丁在GR/Au/CILE上的电化学行为,求解了相关的电化学参数。在最佳实验条件下,芦丁的氧化峰电流与其浓度在8.0×10"8~8.0×10"5mol/L范围内呈现良好的线性关系,检出限为2.55×10"8mol/L(3σ)。将本方法应用于复方芦丁片样品的测定,结果令人满意。  相似文献   

9.
混合离子液体(N-丁基吡啶六氟磷酸盐,[BuPy][PF6])与石墨粉,制备了离子液体碳糊电极(CILE),再采用电沉积法制得PB/Au/CILE修饰电极,研究了该修饰电极的电化学行为及其对H2O2的电催化,建立了H2O2的计时安培测定新方法。结果表明:在该修饰电极上PB产生了一对准可逆的氧化还原峰,并对H2O2表现出良好电催化作用,安培法测定H2O2的线性范围为5.0×10-6~1.55×10-4mol/L,检出限为1.0×10-6mol/L(S/N=3)。连续10次测定5.0×10-6mol/L H2O2峰电流的RSD为2.1%。  相似文献   

10.
以离子液体1-乙基-3-甲基咪唑四氟硼酸盐为粘合剂制备了离子液体修饰碳糊电极(CILE)。采用循环伏安沉积法一步制备了聚中性红-纳米金功能化石墨烯复合材料修饰CILE (p NR-nAu-GR/CILE),并用循环伏安法、交流阻抗法、电子扫描电镜法对电极进行了表征,表明pNR-nAu-GR/CILE具有良好的导电能力。研究了多巴胺(DA)在pNR-nAu-GR/CILE上的电化学行为,考察了扫描速度、溶液pH等参数对DA检测的影响,计算了相关的电化学参数,电子转移数为1.7,电子传递系数为0.60,表观异相电子转移速率常数为1.65 s~(-1)。考察了常见干扰物质对DA的检测影响,结果良好。在最优实验条件下,采用示差脉冲法获得了DA在0.05~800.0μmol/L范围内的工作曲线,检测限为12 nmol/L。将pNRn Au-GR/CILE进一步用于人尿的检测,样品回收率为96.3%~105.9%,相对标准偏差小于4.3%。  相似文献   

11.
本文制备了离子液体-Ni微/纳米粒子修饰碳糊电极.研究了离子液体对Ni微/纳米粒子氧化还原的促进作用,用循环伏安法在0.1 mol/L B-R缓冲溶液(pH=4.5)中研究了维生素B2(VB2)在该修饰电极上的电化学行为,优化了各种实验条件.实验结果表明,本文制备的修饰电极能很好地催化氧化VB2,VB2在该修饰电极上的...  相似文献   

12.
氧化还原蛋白质在模拟生物膜修饰电极上的直接电化学   总被引:8,自引:0,他引:8  
胡乃非  曾泳淮 《化学通报》2001,64(3):152-157
评述了氧化还原蛋白在模拟生物膜这种新型的化学修饰电极上的直接电化学研究的进展。对蛋白质在表面活性剂薄膜电极和多层复合薄膜电极上的电化学行为、模拟生物膜的超分子结构以及蛋白质在该类薄膜修饰电极上对不同底物的电催化性质进行了较详细的介绍。  相似文献   

13.
碳纳米管促进氧化还原蛋白质和酶的直接电子转移   总被引:7,自引:1,他引:6  
蔡称心  陈静 《电化学》2004,10(2):159-167
将血红蛋白(Hb)、辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOx)分别固定在经碳纳米管修饰的玻碳电极(CNT/GC)上,制成Hb CNT/GC、HRP CNT/GC和GOx CNT/GC电极.Hb、HRP和GOx在CNT/GC电极表面均能发生有效和稳定的直接电子转移反应,其相应的循环伏安曲线均显示出一对几近对称的氧化还原峰;在60mV/s下,其式量电位E0'分别为-0.343V、-0.319V和-0.456V(vs.SCE,pH6.9),且不随扫速而变;以上三者在CNT/GC电极表面直接电子转移的表观速率常数ks依次为1.25±0.25、2.07±0.56和1.74±0.42s-1;根据式量电位E0'随缓冲溶液pH值的变化关系,确知在CNT/GC电极上,Hb或HRP发生的直接电化学遵从(1e+1H+)电极过程机理,而GOx发生的直接电化学反应则遵从(2e+2H+)机理.此外,固定在CNT/GC电极表面的Hb、HRP和GOx也同时表现出对各自底物的生物电催化活性.由本文制备的碳纳米管修饰电极及其固定生物蛋白质(酶)的方法具有简单、易于操作等优点,并可用于对其它生物氧化还原蛋白质和酶的直接电子转移测试.  相似文献   

14.
采用循环伏安法和恒电位电解法研究了离子液体EMimBF4中硝基苯在微铂电极上的选择性电还原特性. 研究结果表明, 硝基苯在铂电极上的电还原反应为双分子八电子三步骤电化学过程: 第一步反应为准可逆单电子转移步骤, 产生阴离子自由基; 第二步为二电子转移步骤, 并伴有随后的双分子不可逆自由基偶合反应和快速质子化及脱水反应, 主要产物为氧化偶氮苯; 第三步是二电子转移产生偶氮苯的过程. 通过控制电位, 可以选择性地合成氧化偶氮苯和偶氮苯; 在EMimBF4中, 硝基苯和水的浓度变化对电化学行为产生较大影响.  相似文献   

15.
以离子液体1-丁基-3-甲基咪唑六氟磷酸盐(BMIMPF6)、壳聚糖(CS)、纳米银(Nano-Ag)为修饰剂,制备了Nano-Ag/CS/BMIMPF6/Au/CME修饰电极,将血红蛋白(Hb)固载在修饰电极表面,离子液体优良的导电性和Nano-Ag高的表面活性和强的吸附性,为Hb的吸附和在修饰电极表面的直接电子转移构建了一个良好的微环境,同时也提高了Hb的电催化活性,并以此制备了具有良好催化活性的H2O2生物传感器。研究了修饰电极的特性,优化了修饰电极的实验条件,详细的讨论了Hb在电极上的电子转移机理以及H2O2的电化学行为,并对实际样品中的H2O2进行了检测,获得较好结果。  相似文献   

16.
制备了碳纳米管-离子液体糊修饰电极并用电化学方法对其进行了表征,研究对乙酰氨基酚在碳纳米管-离子液体糊修饰电极上的电化学行为,建立了以碳纳米管-离子液体糊修饰电极测定对乙酰氨基酚(APAP)的灵敏的电化学方法.在优化的实验条件下,对乙酰氨基酚的氧化峰电流与其浓度在1.0×10-7~1.0×10-6 mol/L和1.0×...  相似文献   

17.
血红蛋白在碳纳米管修饰碳糊电极上的直接电化学行为   总被引:6,自引:0,他引:6  
利用吸附法将血红蛋白(Hb)固定在碳纳米管修饰碳糊电极表面,制成稳定的固载Hb碳纳米管修饰电极,研究了Hb在碳纳米管修饰电极上的直接电化学行为.固载Hb的碳纳米管修饰电极在pH=7.0的PBS(磷酸盐缓冲溶液)中有一对相当可逆的循环伏安氧化还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.式电位为-0.160 V(vs SCE),随扫描速度变化很小.电子转移数为1.021,近似为一个辅基发生电子转移.Hb在碳纳米管修饰电极表面的电子转移常数为0.0816 s-1,远大于亚甲蓝作媒介体时Hb的电子转移反应速率常数.应用于过氧化氢、三氯乙酸和硝基苯等的电催化还原,固定在碳纳米管修饰碳糊电极的血红蛋白表现出稳定且较高的催化活性.  相似文献   

18.
金-石墨烯修饰电极电化学检测塑料瓶中双酚A   总被引:1,自引:0,他引:1  
在离子液体碳糊电极(CILE)表面上采用一步电还原法制备了纳米金(nAu)-石墨烯(GR)复合膜修饰电极(nAu-GR/CILE)。研究了双酚A(BPA)在nAu-GR/CILE上的电化学行为,BPA的电极反应过程为受吸附控制的不可逆过程;采用示差脉冲伏安法研究了BPA氧化峰电流和浓度之间的关系,在0.08~400.0μmol/L范围内,检出限为0.021μmol/L(3σ)。将nAu-GR/CILE用于塑料瓶中BPA的检测,与采用高效液相色谱法(HPLC)进行对比,结果表明两种方法对BPA的检测结果相吻合。  相似文献   

19.
采用电化学沉积法将铁氰化铈(CeHCF)薄膜修饰于玻碳电极(GCE)表面,得到铁氰化铈薄膜修饰玻碳电极;将血红蛋白(Hb)固载于该修饰电极表面,成功制得了Hb/CeHCF/GCE过氧化氢生物传感器.考察了铁氰化铈薄膜修饰玻碳电极的氧化还原机理和制备条件,并对血红蛋白在电极上的电子传递过程进行了较为深入的研究.结果表明,铁氰化铈薄膜为血红蛋白提供了温和的固载环境,可实现血红蛋白与电极表面的直接电子转移,提高了血红蛋白的电化学活性;所制得的传感器对过氧化氢具有较高的催化响应和较强的稳定性.相关研究结果在生物医学和临床医学领域具有一定的借鉴意义.  相似文献   

20.
碳纳米管电极上辣根过氧化物酶的直接电化学   总被引:24,自引:3,他引:21  
蔡称心  陈静 《化学学报》2004,62(3):335-340
制备了碳纳米管修饰玻碳电极(CNT/GC).将辣根过氧化物酶(HRP)固定在CNT/GC电极表面,形成HRP-CNT/GC电极.研究了HRP的直接电子转移.实验结果表明,HRP在CNT/GC电极表面能进行有效和稳定的直接电子转移反应,其循环伏安曲线上表现出一对良好的、几乎对称的氧化还原峰;式量电位E0'几乎不随扫速(至少在20~100 mV/s的扫速范围内)而变化,其平均值为(-0.319±0.002) V (vs. SCE, pH 6.9); HRP在CNT/GC电极表面直接电子转移的速率常数为(2.07±0.56) s-1;式量电位E0'与溶液pH 的关系表明HRP的直接电化学是(1e+1H+)的电极过程.进一步的实验结果显示,固定在CNT/GC电极表面的HRP能保持其对H2O2还原的生物电催化活性,而且能快速地响应H2O2浓度的变化.本文制备碳纳米管修饰电极和固定酶的方法具有简单和易于操作等优点,可用于获得其它生物氧化还原蛋白质和酶的直接电子转移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号