首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium telluride (CdTe) thin films were prepared by the closed-space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the annealed films at 450 °C for 30 min were dipped in AgNO3–H2O solution at room temperature. These films were again annealed at 450 °C for 1 h to obtain silver-doped samples. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrically i.e. DC electrical resistivity as well as photo resistivity by van der Pauw method at room temperature, dark conductivity, activation energy analysis as a function of temperature by two-probe method under vacuum, and spectrophotometry. The electron microprobe analyzer (EMPA) results showed an increase of Ag content composition in the samples by increasing the immersion time of films in solution. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by doping of Ag. A significant change in the shape and size of the CdTe grains were observed.  相似文献   

2.
The growth of type-II textured tungsten disulfide (WS2) thin films by solid state reaction between the spray deposited WO3 and gaseous sulfur vapors with Pb interfacial layer has been studied. X-ray diffraction (XRD) technique is used to measure the degree of preferred orientation ‘S’ and texture of WS2 films. Scanning electron microscopy (SEM) and transmission electron microscopy techniques have been used to examine the microstructure and morphology. The electronic structure and chemical composition were studied using X-ray photoelectron spectroscopy (XPS). The use of Pb interfacial layer for the promotion of type-II texture in WS2 thin films is successfully demonstrated. The presence of (0 0 3 l), (where l=1, 2, 3, …) family of planes in the XRD pattern indicates the strong type-II texture of WS2 thin films. The crystallites exhibit rhombohedral (3R) structure. The large value of ‘S’ (1086) prompts the high degree of preferred orientation as well. The stratum of crystallites with their basal plane parallel to the substrate surface is seen in the SEM image. The EDS and XPS analyses confirm the tungsten to sulfur atomic ratio as 1:1.75. We purport that Pb interfacial layer enhances type-II texture of WS2 thin films greatly.  相似文献   

3.
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.  相似文献   

4.
We have fabricated LaNiO3 and BaTiO3 films using the rf sputtering method. The LaNiO3 were deposited on Si substrates, demonstrating a (1 0 0) highly oriented structure and nanocrystalline characteristic with a grain size of 30 nm. The BaTiO3 thin films were deposited on the LaNiO3 buffer layers, and have exhibited a (1 0 0) texture with a thickness of 400 nm. A smooth interface is obtained between the LaNiO3 bottom electrode and the BaTiO3 film from cross-section observations by scanning electron microscopy. The bi-layer films show a dense and column microstructure with a grain size of 60 nm. Ferroelectric characterizations have been obtained for the BaTiO3 films. The remnant polarization and coercive field are 2.1 μC/cm2 and 45 kV/cm, respectively. The leak current measurements have shown a good insulating property.  相似文献   

5.
This paper reports high-temperature (305–523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu2−xSe) and copper (II) selenide (Cu3Se2) thin films. Cu2−xSe and Cu3Se2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu2−xSe and Cu3Se2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.  相似文献   

6.
Phase relations around langasite (LGS, La3Ga5SiO14) were studied on the basis of phase assemblage observed during calcination and crystallization process of samples of various compositions in the ternary system La2O3–Ga2O3–SiO2. A ternary compound of apatite structure, La14GaxSi9–xO39–x/2 was found for the first time. Crystallization of this compound was observed in the cooling process of molten samples of stoichiometric LGS as well as LGS single crystal, demonstrating that LGS is an incongruent-melting compound. A phase diagram was established primarily based on the crystallization sequence in the cooling process.  相似文献   

7.
Homogeneous and transparent V2O5–TiO2 composite nanometer thin films were prepared on glass substrates by sol–gel processing and dip-coating technique. The films as well as the dried powder of bulk gel were characterized by different techniques like X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM), atomic force microscope (AFM) and thermogravimetry–differential thermal analysis (TG–DTA). The hydrophilicity of the films was determined by measuring the water contact angles on the films. The results showed that the dopant of V2O5 on TiO2 thin films could produce a visible-light response to the films, and the introduction of V2O5 could suppress the structural phase transition and crystal growth of TiO2 crystal. Finally, the relationship between crystalline size and hydrophilicity under sunlight was investigated in this article.  相似文献   

8.
Clustered anatase phase TiO2 particles were uniformly formed on the surface of glass fibers by a liquid phase deposition (LPD) method at 60 °C using TiF4 and H3BO3 as the precursors. The clustered TiO2 particles deposited on the glass fibers and as a photocatalyst these particles not only have a larger surface area than TiO2 thin films, but also can avoid the disadvantages of using TiO2 powders encountered in air purification or water treatment. The photocatalytic activity of the sample was evaluated by the photocatalytic oxidation of nitrogen monoxide (NO) in the gaseous phase. The deposition conditions and chemical composition of the clustered TiO2 particles were discussed. It was found that the clustered TiO2 particles that formed on the glass fibers obviously showed photocatalytic activity without high-temperature calcination. A formation mechanism was proposed to account for the formation of TiO2 clustered morphology on the glass fibers.  相似文献   

9.
The effect of dopants on the crystal growth and the microstructure of poly-crystalline silicon (poly-Si) thin film grown by metal induced lateral crystallization (MILC) method was intensively investigated. PH3 and B2H6 were used as source gases in ion mass doping (IMD) process to make n-type and p-type semiconductor respectively. It was revealed that the microstructure of MILC region varies significantly as the doping type of the samples varied from intrinsic to n-type and p-type, which was investigated by field emission (FE)-SEM. The microstructure of MILC region of the intrinsic was bi-directional needle network structure whose crystal structure has a (1 1 0) preferred orientation. For p-type doped sample, the microstructure of MILC region was revealed to become unidirectional parallel growth structure more and more as MILC growth proceed, which was led by unidirectional division of needlelike grain at the front of MILC region. And for n-type doped sample, the microstructure was random-directional needlelike growth structure. These phenomena can be explained by an original model of Ni ion and Ni vacancy hopping in the NiSi2 phase and its interface at the front of MILC region.  相似文献   

10.
The comparison of the results of chemical composition, crystal structure, electronic properties and infrared photoconductivity investigations of PbTe/Si and PbTe/SiO2/Si heterostructures doped with Ga atoms by two different techniques is presented in this work. One of these techniques is principally based on the vapour-phase doping procedure of PbTe/Si and PbTe/SiO2/Si heterostructures, which were previously formed by the modified “hot wall” technique. The second method of PbTe(Ga)/Si and PbTe(Ga)/SiO2/Si heterostructure preparation is based upon the fabrication of lead telluride films, which have been doped with Ga atoms in the layer condensation process directly. The lattice parameter and charge carrier density evolutions with the Ga impurity concentration show principally the different character of PbTe(Ga)/Si films prepared by these techniques. It has been proposed that complicated amphoteric (donor or acceptor) behaviour of Ga atoms may be explained by different mechanisms of substitution or implantation of impurity atoms in the crystal structure of lead telluride.  相似文献   

11.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

12.
Titanium nitride (TiN) films were obtained by the atmospheric pressure chemical vapor deposition method of the TiCl4–N2–H2 system with various flow rates of NH3 at 600°C. The growth characteristics, morphology and microstructure of the TiN films deposited were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Without NH3 addition, no TiN was deposited at 600°C as shown in the X-ray diffraction curve. However, by adding NH3 into the TiCl4–N2–H2 system, the crystalline TiN was obtained. The growth rate of TiN films increased with the increase of the NH3 flow rate. The lattice constant of TiN films decreased with the increase of the NH3 flow rate. At a low NH3 flow rate, the TiN (2 2 0) with the highest texture coefficient was found. At a high NH3 flow rate, the texture coefficient of TiN (2 0 0) increased with the increase of the NH3 flow rate. In morphology observation, thicker plate-like TiN was obtained when the NH3 flow rate was increased. When the flow rate of NH3 was 15 sccm, Moiré fringes were observed in the TiN film as determined by TEM analysis. The intrinsic strain was found in the TiN film as deposited with 60 sccm NH3.  相似文献   

13.
This paper investigates preparation of CaSeS thin films using hot-wall epitaxy. These films can be grown epitaxially on cleaved BaF2(1 1 1) at a substrate temperature of 873 K by tailoring the VI/II flux ratio vaporized from Ca and SeS resources. The optical absorption edge of these films thus tailored can be observed clearly, shifting toward higher photon energy with increasing S content. In particular, the energy band gap of CaSe0.66S0.34, capable of lattice-matching to InP was found to be 4.69 eV, producing considerably large band gap difference of 3.34 eV between the CaSe0.66S0.34 and InP.  相似文献   

14.
Comprehensive microstructures of 7% cobalt-doped rutile TiO2 thin films grown on c-plane sapphire by pulsed laser deposition were characterized using transmission electron microscopy (TEM). The effects of oxygen pressure during growth on the Co distribution inside the films were investigated, and the detailed growth mechanism of both TiO2 and TiO2+Co was discussed. The similar oxygen sublattices and low mismatch between (1 0 0) rutile and c-plane sapphire favors the rutile phase. However, the three-fold symmetry of the substrate surface resulted in three rutile domain orientation variants, and they grow adjacent to each other. Cobalt was found to precipitate out as nanocrystals inside the TiO2 matrix as the growth pressure of oxygen was decreased. At 0.05 mTorr oxygen pressure, almost all of the Co segregates into crystallographically aligned nanocrystals with a particle size of 4.4±0.15 nm. All the samples have magnetic coercivity at room temperature. The magnetic moment per Co atom increased with decreased oxygen pressure, suggesting that the Co that replaced the Ti2+ in the TiO2 lattice does not have a large magnetic moment.  相似文献   

15.
Metal organic chemical vapor deposition has been investigated for growth of Bi2Te3 films on (0 0 1) GaAs substrates using trimethylbismuth and diisopropyltelluride as metal organic sources. The results of surface morphology, electrical and thermoelectric properties as a function of growth parameters are given. The surface morphologies of Bi2Te3 films were strongly dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of VI/V and deposition temperature. By optimizing growth parameters, we could clearly observe an electrically intrinsic region of the carrier concentration at the temperature higher than 240 K. The high Seebeck coefficient (of −160 μVK−1) and good surface morphology of this material is promising for Bi2Te3-based thermoelectric thin film and two-dimensional supperlattice device applications.  相似文献   

16.
Nitrogen-doped ZnO films were deposited on silicon (1 0 0) substrate using zinc acetate and ammonium acetate aqueous solution as precursors by ultrasonic spray pyrolysis. Successful p-type doping can be realized at optimized substrate temperature. The p-type ZnO films show excellent electrical properties such as hole concentration of 1018 cm−3, hole mobility of 102 cm2 V−1 s−1 and resistivity of 10−2 Ω cm. In the photoluminescence measurement, a strong near-band-edge emission was observed, while the deep-level emission was almost undetectable in both undoped and N-doped ZnO films. The growth and doping mechanism of N-doped ZnO films were discussed.  相似文献   

17.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

18.
In this paper, we compare the properties of ZnO thin films (0 0 0 1) sapphire substrate using diethylzinc (DEZn) as the Zn precursor and deionized water (H2O) and nitrous oxide (N2O) as the O precursors, respectively in the main ZnO layer growth by atmospheric pressure metal–organic chemical vapor deposition (AP-MOCVD) technique. Surface morphology studied by atomic force microscopy (AFM) showed that the N2O-grown ZnO film had a hexagonal columnar structure with about 8 μm grain diameter and the relatively rougher surface compared to that of H2O-grown ZnO film. The full-widths at half-maximum (FWHMs) of the (0 0 0 2) and () ω-rocking curves of the N2O-grown ZnO film by double-crystal X-ray diffractometry (DCXRD) measurement were 260 and 350 arcsec, respectively, indicating the smaller mosaicity and lower dislocation density of the film compared to H2O-grown ZnO film. Compared to H2O-grown ZnO film, the free exciton A (FXA) and its three phonon replicas could be clearly observed, the donor-bound exciton A0X (I10):3.353 eV dominated the 10 K photoluminescence (PL) spectrum of N2O-grown ZnO film and the hydrogen-related donor-bound exciton D0X (I4):3.363 eV was disappeared. The electron mobility (80 cm2/V s) of N2O-grown ZnO film has been significantly improved by room temperature Hall measurement compared to that of H2O-grown ZnO film.  相似文献   

19.
High pure Ce(DPM)4, Gd(DPM)3, Y(DPM)3 and Zr(DPM)4 (DPM=dipivaloylmethanate=2,2,6,6-tetramethyl-3,5-heptanedionato) powders were successfully synthesized from inorganic salts and HDPM in ethanol/aqueous solution followed by recrystallization from toluene. Freshly prepared samples have been characterized by elemental analysis, X-ray diffraction, thermogravimetry-differential thermal analysis, nuclear magnetic resonance spectroscopy and fourier transform infrared spectroscopy. Aged samples, obtained by exposing fresh ones into air for 30 days, were also represented. Various structures, stabilities and volatilities result from different metal atoms and coordination numbers. Those metal β-diketonate chelates are served as precursors of metalorganic chemical vapor deposition for single and multi-component oxide thin films.  相似文献   

20.
Titanium oxide (TiO2) films were deposited on silicon substrates at the temperature in the range 50–600 °C by DC reactive magnetron sputtering. It was found that the anatase and rutile phases co-existed in the TiO2 films deposited at 450–500 °C, while only the anatase phase existed in those deposited at other temperatures. The mechanism of such a crystallization behavior of TiO2 films is preliminarily explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号