首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylated analogues of cis-dichlorobis(1,10-phenanthroline)rhodium(III)chloride (BISPHEN) have been prepared in order to increase the hydrophobicity of the parent compound, and thus create octahedral rhodium (III) complexes suitable for use as anticancer and antiviral agents that can be photoactivated. The parent complex has been shown in earlier work to be unable to cross through cell membranes. Octamethylation, as in the case of cis-dichlorobis(3,4,7,8-tetramethyl-1,10-phenanthroline)rhodium(III)chloride (OCTBP), provides enough hydrophobicity to be taken up by KB tumor cells. It also provides a higher level of ground-state association with double-stranded DNA and increases the quantum efficiency of photoaquation by greater than 10-fold, relative to BISPHEN. OCTBP forms covalent bonds to deoxyguanosine when irradiated with the nucleoside, as has been seen with the parent complex. Irradiation of OCTBP in the presence of the KB or M109 tumor cell lines using narrow-band UVB (lambda = 311 nm) irradiation initiates a considerable amount of phototoxicity. There is evidence that OCTBP acts as a prodrug (i.e. after passing through the cell membrane the metal complex is photolyzed to cis-chloro aquo OCTBP, which may be the active phototoxic agent). OCTBP and the tetramethyl analogue cis-dichlorobis(4,7-dimethyl-1,10-phenanthroline)rhodium(III)chloride (47TMBP) also show photoaquation upon excitation with visible light (lambda > 500 nm), and indeed, some phototoxicity of KB cells is observed at these wavelengths as well. This is attributed to direct population of photoactive triplet-excited states. These results, together with our earlier studies of cis-dichloro[dipyrido(3,2-a: 2',3'-c)phenazine (1,10-phenanthroline)rhodium(III)chloride (DPPZPHEN) demonstrate that such octahedral rhodium complexes are viable "photo-cisplatin" reagents.  相似文献   

2.
The photophysical properties of singlet and triplet metal-to-ligand charge transfer (MLCT) states of [Cu(I)(diimine)(2)](+), where diimine is 2,9-dimethyl-1,10-phenanthroline (dmphen), 2,9-dibutyl-1,10-phenanthroline (dbphen), or 6,6'-dimethyl-2,2'-bipyridine (dmbpy), were studied. On 400 nm laser excitation of [Cu(dmphen)(2)](+) in CH(2)Cl(2) solution, prompt (1)MLCT fluorescence with a quantum yield of (2.8 +/- 0.8) x 10(-5) was observed using a picosecond time-correlated single photon counting technique. The quantum yield was dependent on the excitation wavelength, suggesting that relaxation of the Franck-Condon state to the lowest (1)MLCT competes with rapid intersystem crossing (ISC). The fluorescence lifetime of the copper(I) compound was 13-16 ps, unexpectedly long despite a large spin-orbit coupling constant of 3d electrons in copper (829 cm(-1) ). Quantum chemical calculations using a density functional theory revealed that the structure of the lowest (1)MLCT in [Cu(dmphen)(2)](+) (1(1)B(1)) was flattened due to the Jahn-Teller effect in 3d(9) electronic configuration, and the dihedral angle between the two phenanthroline planes (dha) was about 75 degrees with the dha around 90 degrees in the ground state. Intramolecular reorganization energy for the radiative transition of 1(1)B(1) was calculated as 2.1 x 10(3) cm(-1), which is responsible for the large Stokes shift of the fluorescence observed (5.4 x 10(3) cm(-1)). To understand the sluggishness of the intersystem crossing (ISC) of (1)MLCT of the copper(I) compounds, the strength of the spin-orbit interaction between the lowest (1)MLCT (1(1)B(1)) and all (3)MLCT states was calculated. The ISC channels induced by strong spin-orbit interactions (ca. 300 cm(-1)) between the metal-centered HOMO and HOMO - 1 were shown to be energetically unfavorable in the copper(I) compounds because the flattening distortion caused large splitting (6.9 x 10(3) cm(-1)) between these orbitals. The possible ISC is therefore induced by weak spin-orbit interactions (ca. 30 cm(-1)) between ligand-centered molecular orbitals. Further quantum mechanical study on the spin-orbit interaction between the lowest (3)MLCT (1(3)A) and all (1)MLCT states indicated that the phosphorescence borrows intensity from 2(1)B(1). The radiative rate of the phosphorescence was also structure-sensitive. The flattening distortion reduced the transition dipole moment of 2(1)B(1) --> the ground state, and decreased the extent of mixing between 1(3)A and 2(1)B(1), thereby considerably reducing the phosphorescence radiative rate at the MLCT geometry compared to that at the ground state geometry. The theoretical calculation satisfactorily reproduced the radiative rate of ca. 10(3) s(-1) and accounted for the structure-sensitive phosphorescence intensities of copper(I) bis(diimine) compounds recently demonstrated by Felder et al. (Felder, D.; Nierengarten, J. F.; Barigelletti, F.; Ventura, B.; Armaroli, N. J. Am. Chem. Soc. 2001, 123, 6291).  相似文献   

3.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

4.
Two new dinuclear Ru(III) complexes containing naphthalene moieties, K[Ru2(dhpta)(mu-O2CCH2-1-naph)2] (1) and K[Ru2(dhpta)(mu-O2CCH2-2-naph)2] (2) (H5dhpta = 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid, naph-1-CH2CO2H = 1-naphthylacetic acid, naph-2-CH2CO2H = 2-naphthylacetic acid), were synthesized. Complex 2 crystallized as an orthorhombic system having a space group of Pbca with unit cell parameters a = 10.6200(5) A, b = 20.270(1) A, c = 35.530(2) A, and Z = 8. EXAFS analysis of 1 and 2 in the solid states and in solution clarified that the dinuclear structures of 1 and 2 were kept in DMSO solutions. Variable-temperature magnetic susceptibility data indicated that the two Ru(III) centers are strongly antiferromagnetically coupled as shown by the large coupling constants, J = -581 cm(-1) (1) and -378 cm(-1) (2). In the cyclic voltammograms of 1 and 2, one oxidation peak and two reduction peaks which were assigned to the redox reaction of the ruthenium moieties were observed in DMF. The large conproportionation constants estimated from the reduction potentials of Ru(III)Ru(III) and Ru(III)Ru(II) indicated the great stability of the mixed-valent state. The mixed-valent species [Ru(III)Ru(II)(dhpta)(mu-O2CCH2-R)2](2-) (R = 1-naph (6) and R = 2-naph (7)) were prepared by controlled potential electrolysis of 1 and 2 in DMF. The electronic absorption spectra of 6 and 7 were similar to that of [Ru(III)Ru(II) (dhpta)(mu-O2CCH3)2](2-) which is a typical Class II type mixed-valent complex. The fluorescence decay of 1 and 2 indicated that there are two quenching processes which come from the excimer and monomer states. The short excimer lifetimes of 1 and 2 were ascribed to the energy transfer from the naphthyl moieties to the Ru centers. The different excimer ratio between 1 and 2 suggested that the excimer formation is affected by the conformation of the naphthyl moieties in the diruthenium(III) complexes.  相似文献   

5.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

6.
7.
Copper(II) and cadmium(II) complexes with bis(2,4,7,8,9-pentamethyldipyrrolylmethene-3-yl)-methane were synthesized. Influence of the complex-forming ion nature on the optical properties of [Cd2L2] and [Cu2L2] helicates was studied.  相似文献   

8.
Mixed cyclization of 3-mono-, 4-mono-, or 4,5-di(porphyrinated) phthalonitrile compounds 2, 3, or 6 and unsubstituted phthalonitrile with the half-sandwich complex [EuIII(acac)(Pc)] (Pc=phthalocyaninate, acac=acetylacetonate) as the template in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol afforded novel porphyrin-appended europium(III) bis(phthalocyaninato) complexes 7-9 in 30-40% yield. These mixed tetrapyrrole triads and tetrad were spectroscopically and electrochemically characterized and their photophysical properties were also investigated with steady-state and transient spectroscopic methods. It has been found that the fluorescence of the porphyrin moiety is quenched effectively by the double-decker unit through an intramolecular photoinduced electron-transfer process, which takes place in several hundred femtoseconds, while the recombination of the charge-separated state occurs in several picoseconds. By using different phthalocyanines containing different numbers of porphyrin substituents at the peripheral or nonperipheral position(s) of the ligand, while the other unsubstituted phthalocyanine remains unchanged in these double-deckers, the effects of the number and the position of the porphyrin substituents on these photophysical processes were also examined.  相似文献   

9.
A complete set of platinum(II) solketal substituted phthalocyanines has been synthesized and characterized. To evaluate their potential as Type II photosensitizers for photodynamic therapy, comparative studies of their photophysical and photochemical properties with analogous zinc(II) series have been achieved: electronic absorption, fluorescence quantum yields, lifetimes, and fluorescence quenching by benzoquinone, as well as singlet oxygen generation and photodegradation. It appears that platinum(II) phthalocyanines are worth being used as Type II photosensitizers, as they exhibit good singlet oxygen generation and appropriate photodegradation.  相似文献   

10.
The pyrolysis of 1,1-dichloroperfluorotetralin (4) in a stream of argon gives a mixture contained perfluoro-1-methyleneindan (1), perfluoro-3-methylindene (6), 1,1-dichloroperfluoroindan (2) and perfluoroindene (7), while copyrolysis of tetralin 4 with CHClF2 gives a mixture of compounds 1, 6 in the absence of compounds 2 and 7. 1-Chloro-2-(1-chloro-2,2-difluorovinyl)-3,4,5,6-tetrafluorobenzene (12) is formed in the pyrolysis of 1,1-dichloroperfluorobenzocyclobutene (5) in a stream of argon as well as in a stream of CHClF2.  相似文献   

11.
K Shiba  H Mori  K Hisada 《Radioisotopes》1988,37(5):269-276
We studied the tumor-localizing characteristics of alicyclic alpha-amino acid analogs (a-j) without alpha-hydrogen, because of the selective affinity of synthetic nonmetabolizing amino acids such as 1-aminocyclopentanecarboxylic acid (ACPC) and alpha-aminoisobutyric acid alpha-AIB) to tumor tissues. Ten different alicyclic alpha-amino acids (a-j) were labeled with 14C using a modified Bücherer synthesis for amino acids. The tissue distributions and whole-body autoradiographic study of these 14C-labeled alicyclic alpha-amino acid analogs (a-j) were investigated in mice bearing Ehrlich tumor. These results showed that the tumor uptakes and tumor to tissue concentration ratios increased with decreasing ringsize in homologous series (8- through 4-membered ring systems) and alicyclic alpha-amino acid analogs containing 3- or 4-methyl group had the higher tumor to tissue concentration ratios. On the other hand, alicyclic alpha-amino acid analogs containing 2-methyl group and 4-phenyl group showed the lower tumor uptakes and the lower tumor to tissue concentration ratios. These results suggest that the small ringsize alicyclic alpha-amino acid analogs containing 3-methyl group such as 3-methyl-1-aminocyclopentanecarboxylic acid (3-MeACPC) may be effective for the early detection of tumors.  相似文献   

12.
This study presents synthesis of novel peripherally tetrasubstituted Zn(II) and In(III) phthalocyanine complexes bearing 3,5-bis(trifluoromethyl)phenoxy groups. These phthalocyanines were characterized by performing elemental analysis, mass spectrometry, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet visible spectrophotometric techniques. Aggregation properties of the resulting phthalocyanines were studied in different concentrations of DMSO. Aggregation behavior of the newly synthesized phthalocyanines was investigated in various organic solvents, as well. Photochemical and photophysical characterization of the resulting compounds were carried out to evaluate their photodynamic therapy properties in DMSO. The new metallophthalocyanines have high singlet oxygen quantum yields ranging from 0.72 to 0.88.  相似文献   

13.
Photoreactive main chain liquid crystalline polyesters containing oxadiazole and bis(benzylidene)cycloalkanone moieties were synthesized and characterized by structural, thermal, mesomorphic, and optical measurements. The bis(benzylidene) cycloalkanone chromophores in the main chain can constitute both as a mesogen and photoreactive center, whereas 1,3,4‐oxadiazole is a well‐known fluorophore. The thermal properties of polymers were found to be inversely proportional not only to the spacer length but also to ring‐size of cycloalkanones. Hot stage polarized optical microscopic investigations displayed enantiotropic nematic liquid crystalline phases and development of grainy to schlieren textures depends on the length of flexible spacer in the polymer backbone which was in accordance with DSC analysis. Both photoisomerization and photodimerization are observed from the absorption spectra and discussed. The fluorescence spectra in solution state at various concentrations showed that the polymers show blue‐emission maxima and the Stokes shifts being 48–49 nm. The energy transfer occurred when increasing the concentration of the solution. The band gap energies calculated from the absorption spectra are in the range of 3.17–3.41 eV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5760–5775, 2008  相似文献   

14.
The results of studies on the synthesis of porphyrin-quinone compounds and investigation of their photochemical properties are summarized. Effects of various factors (the redox potential, the distance between donor and acceptor moieties, their spatial orientation, the free energy of the reaction, and solvents) on the photoinduced electron transfer in these model systems are discussed. The dyad and triad model systems have been compared. The possibility of using these systems for modeling the primary steps of photosynthesis is discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1. pp. 9–24, January, 1996.  相似文献   

15.
A series of axial di-substituted silicon(IV) phthalocyanines with electron-donating and electron-withdrawing properties were synthesized. The compounds were characterized by elemental analysis, 1H NMR, IR, and ESI-MS. The effect of axial ligands on the photophysical properties of silicon phthalocyanines was studied by UV/Vis, steady-state and time-resolved fluorescence spectroscopic analyses. Compared with silicon phthalocyanines with electron-donating properties, silicon phthalocyanines with electron-withdrawing properties could expand the π-conjugation in the dyes, resulting in a redshift of Q bands, lower fluorescence emission intensity and fluorescence quantum yields, but increasing fluorescence lifetimes. These results strongly suggest that the molecular design of phthalocyanines is essential for construction of photoactive materials.  相似文献   

16.
The absorption and emission spectra of 1,6-bis(2-hydroxyphenol)pyridylboron bis(4-n-butylphenyl)phenyleneamine were systematically calculated by time-dependent density functional theory (TD-DFT) level. These results are in good agreement with experiment ones. The charge transport properties were investigated within the framework of the charge hopping model. The results show that 1,6-bis(2-hydroxyphenyl)pyridineboron ((dppy)BF) functions as a electron transport group and triphenylamine as a hole transport group; the charge transport ability for the two types of carriers is not only high but also nearly balanced, which explains why it is an efficient single-layer electroluminescent device. On the basis of the large second-order polarizability value and high transparency, this compound has the possibility to be an excellent second-order nonlinear optical material. The main origin of this large second-order nonlinear optical response is charge transfer from the triphenylamine group to (dppy)BF.  相似文献   

17.
1,3-Bis(4-(2-quinoline-2-vynyl)phenoxy)propane a bis(styrylquinoline) dyad (S3S), has been synthesized and investigated. A comparison of S3S with the model 2-(4-methoxystyryl)quinoline (MeOSQ) has shown that integration of two styrylquinoline fragments (SQ) into the covalently bound dyad affects neither spectral properties nor the initial rate of the transcis photoisomerization reaction, but it results in both a change of the photolysis kinetics in general and the enrichment of the photostationary state in the isomer that has had a higher molar absorption coefficient at the irradiation wavelength. The kinetic scheme of the dyad photolysis including four isomers and eight reactions has been analyzed. The photoisomerization quantum yield of the SQ moiety of the dyad is half that of MeOSQ. Density functional theory (DFT) B3LYP/6–31G* calculation has revealed that the styrylquinoline nuclei in both MeOSQ and the S3S dyad have close geometrical parameters and electron structure. Absorption spectra have been calculated by the TDDFT method in the isolated-molecule approximation for an intermolecular hydrogen bonding-stabilized cluster with the ethanol molecule and in terms of the polarized continuum model (PCM). The absorption spectrum of the trans (E)-isomer is represented as spectra of two s-conformers, and the TDDFT method for the cis (Z)-isomer underestimates the energy of the long-wavelength absorption band.  相似文献   

18.
The synthesis and characterization of new peripherally tetra-4-benzyloxybenzoxy substituted metal-free, zinc and lead phthalocyanines are described for the first time in this study. The influence of various organic solvents and the nature of the central metal ion on the spectroscopic, photophysical and photochemical properties has been investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds in different solvents. Photophysical and photochemical properties of phthalocyanine compounds are very useful for photodynamic therapy applications. Especially high singlet oxygen quantum yields are very important for Type II mechanism. The studied phthalocyanine compounds showed good singlet oxygen generation and these compounds show potential as Type II photosensitizers. The fluorescences of the studied compounds are effectively quenched by 1,4-benzoquinone in different solvents.  相似文献   

19.
We synthesized azobenzene-conjugated bis(terpyridine) Ru(II) and Rh(III) mononuclear and dinuclear complexes and investigated their photochemical properties on excitation of the azo pi-pi band upon 366 nm light irradiation. The Ru mononuclear complex underwent trans-to-cis photoisomerization to reach the photostationary state with only 20% of the cis form, while the Ru dinuclear complex did not isomerize at all photochemically. On the other hand, the mononuclear and dinuclear Rh complexes showed almost complete trans-to-cis photoisomerization behavior. Cis forms of the Rh complexes thermally returned to the trans form at a much slower rate than those of organic azobenzenes, but they did not isomerize photochemically. The reduction potential of the cis forms was 80 mV more negative than that of the trans forms. The photoisomerization quantum yields of the Rh complexes were strongly dependent on the polarity, viscosity, and donor site of the solvents as well as the size of the counterions. We investigated the photoisomerization process of these complexes using femtosecond absorption spectroscopy. For the Rh complexes, we observed S(n) <-- S(2) and S(n) <-- S(1) absorption bands similar to those of organic azobenzenes. For the Ru complexes, we observed very fast bleaching of the MLCT band of the Ru complex, which indicated that the energy transfer pathway to the MLCT was the primary cause of the depressed photoisomerization. The electronic structures, which were estimated from ZINDO molecular orbital calculation, supported the different photochemical reaction behavior between the Ru and Rh complexes.  相似文献   

20.
The synthesis and characterization of new peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines with 2-, 3- and 4-phenyloxyacetic acid functionalities are described for the first time in this study. The new compounds have been characterized by elemental analysis, FT-IR, UV-Vis, MALDI-TOF and 1H-NMR spectra. Photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds are studied in dimethylformamide (DMF). The influence of the substituent position on the phthalocyanine framework (non-peripherally or peripherally), central metal ion (metal-free or zinc) and the position of the COOH group (2-, 3- or 4-position on the phenyloxyacetic acid) on the spectroscopic, photophysical and photochemical properties have been investigated. Non-peripherally zinc(II) phthalocyanines (1b and 2b) and peripherally zinc(II) phthalocyanine (4b) gave good singlet oxygen quantum yields (ΦΔ) (0.37, 0.39 and 0.38, respectively) which indicate the potential of the complexes as photosensitizers in applications of PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号