首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel type of random copolymer comprised of a polymerized ionic liquid, poly(1-((4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), and amorphous rubbery poly(oxyethylene methacrylate) (POEM) was synthesized and employed as a solid electrolyte in an I2-free dye-sensitized solar cell (DSSC). The copolymer electrolytes deeply infiltrated into the nanopores of mesoporous TiO2 films, resulting in improved interfacial contact of electrode/electrolyte. The glass transition temperature (T g) of the PEBII–POEM (?23 °C) was lower than that of PEBII homopolymer (?4 °C), indicating greater chain flexibility in the former. However, the DSSC efficiency of PEBII–POEM (4.5 % at 100 mW/cm2) was lower than that of PEBII (5.9 %), indicating that ion concentration is more important than chain flexibility. Interestingly, upon the introduction of ionic liquid, i.e., 1-methyl-3 propylimidazolium iodide, the efficiency of PEBII remained almost constant (5.8 %), whereas that of PEBII–POEM was significantly improved up to 7.0 % due to increased I? ion concentration, which is one of the highest values for I2-free DSSCs.  相似文献   

2.
Ionic liquid electrolytes for dye-sensitized solar cells   总被引:1,自引:0,他引:1  
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.  相似文献   

3.
The present review offers a survey of liquid electrolytes used in dye-sensitized solar cells from the beginning of photoelectrochemical cell research. It handles both the solvents employed, and the prerequisites identified for an ideal liquid solvent, as well as the various effects of electrolyte solutes in terms of redox systems and additives. The conclusions of the present review call for more detailed molecular insight into the electrolyte-electrode interface reactions and structures.  相似文献   

4.
For the first time silica nanoparticles were used to solidify ionic liquids. These ionic liquid-based quasi-solid-state electrolytes were successfully employed for regenerative photoelectrochemical cells that yielded 7% efficiency at AM 1.5 sunlight in combination with an amphiphilic ruthenium polypyridyl photosensitizer.  相似文献   

5.
In solvent-free ionic liquid electrolytes for efficient dye-sensitized solar cells, iodide and non-iodide melts are ordinarily blended in order to attain a high dynamic fluidity and thereby meet a fast mass transport of electroactive species. This common tactic could bring forth a prominent impact of various anions on cell efficiency by altering photocurrent and/or photovoltage. Herein we report evident effects of the dicyanamide versus tetracyanoborate anion on the energetics of titania conduction band edge and the kinetics of multi-channel charge-transfer reactions in cells employing a high absorption coefficient ruthenium sensitizer C106. A slightly shorter photoluminescence lifetime of C106 grafted on alumina is probed for the tetracyanoborate-based reference cell with respect to the dicyanamide counterpart. However, owing to a more favourable thermodynamic driving force of ~90 meV, the tetracyanoborate anion prompts an almost 3-fold faster electron injection from the excited-state dye to titania than dicyanamide, leading to a higher charge separation yield, which is in good agreement with an almost indistinguishable ratio of external quantum efficiency enhancement in the whole spectral response region. Compared to tetracyanoborate, the presence of dicyanamide at the titania/electrolyte interface evokes a 27-fold smaller interfacial electron exchange rate (K) with triiodide, accounting for the open-circuit photovoltage variation observed in current-voltage measurements.  相似文献   

6.
The co-sensitization of two organic dyes (SQ1 and JK2), which are complementary in their spectral responses, shows enhanced photovoltaic performance compared with that of an individual organic dye-sensitized solar cell. The power conversion efficiency of the co-sensitized organic dye solar cell based on the newly developed binary ionic liquid (solvent-free) electrolyte gives 6.4% under AM 1.5 sunlight at 100 mW/cm2 irradiation, which is higher than that of individual dye-sensitized solar cells. The incident monochromatic photon-to-current conversion efficiency (IPCE) of the co-sensitized solar cell shows typical absorption peaks at 530 and 650 nm corresponding to the two dyes and displays a broad spectral response over the entire visible spectrum with IPCE of >40% in the 400-700 nm wavelength domain.  相似文献   

7.
A stable dye-sensitized solar cell has been obtained based on a new binary ionic liquid electrolyte system containing 1-propyl-3-methylimidazolium iodide and 1-ethyl-3-methylimidazolium tetracyanoborate.  相似文献   

8.
Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) and silica nanoparticles were employed to solidify 3-methoxypropionitrile based liquid electrolytes containing an ionic liquid, 1-methyl-3-propylimidazolium iodide, as iodide resource. These new quasi-solid-state electrolytes were successfully used for regenerative phtoelectrochemical cells that yielded about 6.7% efficiency under simulated full sunlight (air mass 1.5, 100 mW cm−2) in combination with an amphiphilic ruthenium polypyridyl photosensitizer. The as-fabricated device showed a good thermostability at 80 °C for 30 days, maintaining higher than 90% of its initial performance.  相似文献   

9.
An ionic liquid polymer, poly (1-alkyl-3-(acryloyloxy)hexylimidazolium iodide), was employed as an iodine-free electrolyte in all-solid-state dye-sensitized solar cells with an overall conversion efficiency of 5.29% under AM 1.5 simulated solar light (100 mW cm(-2)) illumination.  相似文献   

10.
We utilize a quaternary ammonium salt-derivative ionic liquid called G.CI which is a eutectic mixture of glycerol and choline iodide as electrolyte for dye-sensitized solar cells. Such eutectic compound belongs to a new series of ionic liquid called deep eutectic solvents (DES), which possess many outstanding features compared to the traditional imidazolium-based ionic liquids including cheap raw materials, simple preparation procedures and better biocompatibility. Current–voltage characteristics of the G.CI/PMII-based binary electrolytes stand at 0.533 V on Voc, 12.0 mA cm?2 on Jsc, 0.582 on fill factor, and 3.88% cell efficiency under AM 1.5, 100 mW/cm2 illuminations. The comparable cell performance together with all the above advantages makes G.CI as a strong candidate for future electrolyte development for dye-sensitized solar cells (DSSCs).  相似文献   

11.
A series of allyl-functionalized imidazolium salts are reported, including 1-allyl-3-ethylimidazolium iodide and 1-allyl-3-propylimidazolium iodide, which have melting points close to room temperature and show typical properties of supercooled fluids if heated above their melting points. Their viscosities in the liquid state are considerably lower than the benchmark ionic liquid used in solar cells, viz., 1-propyl-3-methylimidazolium iodide. Electrolytes containing these new liquids provide excellent efficiencies and good stability in dye-sensitized solar cells when subjected to an accelerated-light soaking test at 60 degrees C. The structures of three of the new salts have been established in the solid state by single-crystal X-ray analysis.  相似文献   

12.
Dye-sensitized solar cells(DSSCs) are the most promising, low cost and most extensively investigated solar cells. They are famous for their clean and efficient solar energy conversion. Nevertheless this, long-time stability is still to be acquired. In recent years research on solid and quasi-solid state electrolytes is extensively increased. Various quasi-solid electrolytes, including composites polymer electrolytes, ionic liquid electrolytes,thermoplastic polymer electrolytes and thermosetting polymer electrolytes have been used. Performance and stability of a quasi-solid state electrolyte are between liquid and solid electrolytes. High photovoltaic performances of QS-DSSCs along better long-term stability can be obtained by designing and optimizing quasi-solid electrolytes. It is a prospective candidate for highly efficient and stable DSSCs.  相似文献   

13.
The sunlight is the largest single available source of clean and renewable energy to ensure human society’s sustainable development. Owing to their low production cost and high energy conversion efficiency, dye-sensitized solar cells (DSSCs) have been regarded as good alternatives to conventional photovoltaic devices. Herein, a series of composite electrolytes based on poly(ethylene oxide) (PEO) and the binary ionic liquids 1-propyl-3-methy-imidazolium iodide ([PMIm]I) and 1-ethyl-3-methylimidazolium thiocyanate ([EMIm][SCN]) were prepared and then applied to fabricate six DSSCs. The composite electrolytes were characterized by fourier transform infrared spectroscopy (FTIS), X-ray diffraction (XRD), and electrochemical impedance spectra (EIS). It was shown that the addition of binary ionic liquids would reduce the degree of crystallinity of PEO, thus improving the ionic conductivities of the electrolytes by about 2 orders of magnitude. Investigation on the photovoltaic performances of these DSSCs showed that the fill factor (FF) could reach up to 0.67 and energy conversion efficiency (η) could reach up to 4.04% under AM 1.5 full sunlight (100 mW/cm2).  相似文献   

14.
An ionic liquid polymer gel containing 1-methyl-3-propylimidazolium iodide (MPII) and poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) has been employed as quasi-solid-state electrolyte in dye-sensitized nanocrystalline TiO2 solar cells with an overall conversion efficiency of 5.3% at AM 1.5 illumination.  相似文献   

15.
The exfoliated montmorillonite (exMMT) nanoplatelets that carry negative charges are capable of adsorbing 1-methyl-3-propyl-imidazolium cations to form a gel-type ionic liquid-based electrolyte system for dye-sensitized solar cell (DSSC). Interestingly, it also increases the power conversion efficiency of DSSC from 6.58% to 7.77% at full sun. The increased efficiency is attributed to the decreased resistance of gel electrolyte system and enhanced reduction reaction rate at the counter electrode, both of which are related to the two-dimensional electrolyte nature of exMMTs that repel the I(-)/I(3)(-) redox couples toward their major conduction pathway.  相似文献   

16.
A novel ionic liquid crystal (ILC) system (C(12)MImI/I(2)) with a smectic A phase used as an electrolyte for a dye-sensitized solar cell (DSSC) showed the higher short-circuit current density (J(SC)) and the higher light-to-electricity conversion efficiency than the system using the non-liquid crystalline ionic liquid (C(11)MImI/I(2)), due to the higher conductivity of ILC. To investigate charge transport properties of the electrolytes in detail, the exchange reaction-based diffusion coefficients (D(ex)) were evaluated. The larger D(ex) value of ILC supported that the higher conductivity of ILC is attributed to the enhancement of the exchange reaction between iodide species. As a result of formation of the two-dimensional electron conductive pathways organized by the localized I(3)- and I- at S(A) layers, the concentration of polyiodide species exemplified by I(m)- (m = 5, 7, ...) was higher in C(12)MImI/I(2). However, as the increment of the concentration of polyiodide species is less than that of D(ex), the contribution of a two-dimensional structure of the conductive pathway through the increase of collision frequency between iodide species was proposed. Furthermore, a quasi-solid-state ionic liquid crystal DSSC was successfully fabricated by employing a low molecular gelator. Addition of the 5.0 g/L gelator to ILC improved light-to-electricity conversion efficiency through the increase of J(SC) due to the enhancement of the conductivity in C(12)MImI/I(2)-gel.  相似文献   

17.
Room temperature ionic liquids (RTILs) have been used as electrolytes to investigate the anionic structure dependence of the photoelectrochemical responses of dye-sensitized solar cells (DSCs). A series of RTILs with a fixed cation structure coupling with various anion structures are employed, in which 1-methyl-3-propylimidazolium iodide (PMII) and I(2) are dissolved as redox couples. It is found that both the diffusivity of the electrolyte and the photovoltaic performance of the device show a strong dependence on the fluidity of the ionic liquids, which is primarily altered by the anion structure. Further insights into the structure-dependent physical properties of the employed RTILs are discussed in terms of the reported van der Waals radius, the atomic charge distribution over the anion backbones, the interaction energy of the anion and cation, together with the existence of ion-pairs and ion aggregates. Particularly, both the short-circuit photocurrent and open-circuit voltage exhibit obvious fluidity dependence. Electrochemical impedance and intensity-modulated photovoltage/photocurrent spectroscopy analysis further reveal that increasing the fluidity of the ionic liquid electrolytes could significantly decrease the diffusion resistance of I(3)(-) in the electrolyte, and retard the charge recombination between the injected electrons with triiodide in the high-viscous electrolyte, thus improving the electron diffusion length in the device, as well as the photovoltaic response. However, the variation of the electron diffusion coefficients is trivial primarily due to the effective charge screening of the high cation concentration.  相似文献   

18.
The ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate, was employed to prepare a thiolate/disulfide ionic liquid electrolyte with low viscosity for organic dye-sensitized solar cells (DSCs). CoS was introduced and showed better photovoltaic performance in DSCs than the ubiquitous platinized FTO CE.  相似文献   

19.
Dye-sensitized solar cells (DSSCs) employing a viscous non-volatile electrolyte were prepared by utilizing anatase TiO2 nanorods (synthesized via oriented attachment) as a photoanode material. One promising way to enhance the photovoltaic performance of DSSCs employing viscous electrolytes is to increase ion conductivity by increasing the salt concentration. This is accompanied by an acceleration of the charge recombination reaction and the limiting of the overall conversion efficiency. The results showed that a TiO2 nanorod electrode enables more favorable electron transport than a conventional nanoparticle-based electrode due to the improved electron diffusion length and the large intrinsic surface area.  相似文献   

20.
In this paper, we report on the preparation of interhalogen ionic liquids of the general formula [K+]XY2-, where K+=1,3-dialkylimidazolium, 1,2,3-trialkylimidazolium, or N-alkylpyridinium; XY2-=IBr2- or I2Br-. These compounds were characterized in solution and the solid state by NMR, IR, Raman, and mass spectroscopy. The crystal structure of the compound [Me2BuIm]IBr2 (7) shows that the IBr2- anion has a linear Br-I-Br structure. Indications of an equilibrium between different forms of XY2- anions in solution are observed. Interhalogen ionic salts and liquids were used as electrolyte components for encapsulated monolithic dye-sensitized solar cells. Overall light-to-electricity conversion efficiencies up to 6.4%, 5.0%, and 2.4% at 1000 W/m2 were achieved by using electrolytes based on interhalogen ionic salts and gamma-butyrolactone, glutaronitrile, or native ionic liquids as solvents, respectively. Moreover, in terms of stability, the cell performance lost 9-14% of the initial performance after 1000 h illumination at 350 W/m2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号